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EXECUTIVE SUMMARY

Classification of signal modulation types has received increasing attention over

the last two decades as numerous civilian applications have joined military ones.

Modulation classification can be used to identification purposes, monitoring and/or

detecting transmissions, surveillance, etc... The work presented in this report specifically

focuses on the classification of digital modulation schemes of types [2,4,8]-PSK, [2,4,8]-

FSK and [16,64,256]-QAM. A significant body of work already exists in this area,

however most of it deals with either a small number of symbol states M, relatively clean

channel characteristics, and/or requires large amounts of data.

This study first investigates the selection of robust and well-defined higher-order

statistics-based class features, and next designs a classification procedure which is

applied under low SNR levels, realistic fading and "real-world" type multipath

propagation channel conditions.

The hierarchical tree-based classification approach selected in the study leads to a

relatively simple overall scheme with few parameters needed to differentiate between the

various modulation types under consideration. Back-propagation neural network units

are adopted at each tree node because they offer the flexibility needed to cope with

varying propagation environments, as is the case in real-world communications.

The selection of higher-order statistics parameters as class features for the neural

network classification units is shown to be effective and robust for all classification

schemes, except when differentiating between the various MQAM types considered.

Simulations show that M-QAM types may be so affected by multipath and fading that

xi



higher-order statistic parameters become of very limited use. While being part of the

hierci:chical procedure, the identification of specific MQAM types identification is

conducted via equalization algorithms and combines the generic blind equalization CMA-

FSE and constellation-specific Alphabet Matched equalization algorithms.

The overall hierarchical classifier is extensively tested in various propagation

situations and signal-to-noise ratio (SNR) levels. Simulations show overall classification

performances to be strongly affected by the by the amount of multipath distortion and

noise in the transmission channels. For example, overall classification performances of

99% at 20dB down to 65% at 8dB for rural area propagation environments can be

observed, while in more highly distorted channels such as urban propagation

environments, overall classification performances are only 82% at 20dB down to 62% at

8dB. Results also illustrate the much higher sensitivity of high-order MQAM types to

fading and multipath propagation distortions than the other modulation types considered

in the study are. Results show good performances may be obtained in medium to high

SNR levels only to differentiate between high-order QAM modulation types.
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I. INTRODUCTION

A. OBJECTIVES

Classification of signal modulation types has received increasing attention over

the last two decades as numerous civilian applications have joined military ones.

Modulation classification can be used to identification purposes, monitoring and/or

detecting transmissions, surveillance, etc... This work specifically focuses on the

classification of digital modulation schemes of types M-PSK, M-FSK, M-QAM, where

the number of states M varies. A significant body of work exists in this area, however

most of it deals with either a small number of symbol states M, relatively clean channel

characteristics, and/or requires large amounts of data. This study first investigates the

selection of robust and well-defined class features, and next designs a classification

procedure which is applied under low SNR levels, realistic fading and "real-world" type

multipath propagation channel conditions.

Chapter I reviews some of the most recent work done in the area of digital

modulation classification. Chapter IEI introduces the concept of a digital communication

system and some of the most commonly used modulation schemes that are considered in

this study, namely M-FSK, M-PSK and M-QAM types. Chapter HII discusses the theory

of propagation and presents its impact on the quality of received signals. In Chapter IV,

the concept of signal equalization is defined, and two major methods that will be

extensively used in this study, are analytically described and tested. Chapter V presents

the concept of higher-order statistics, and more specifically focuses on statistical



moments and cumulants selected as identification tools in the proposed digital

modulation identification set-up. Simulations investigate the behavior of these tools and

their robustness under variable propagation conditions. Chapter VI describes the basic

principles of neural networks, which form the core of the proposed classification scheme.

In Chapter VII the proposed classifier is analytically described and evaluated with

extensive simulations. Chapter VIII summarizes the results and recommends possible

extensions to the classification scheme presently implemented.

B. BACKGROUND

The recognition of digital modulation types has been investigated extensively

over the last twenty years. Numerous different approaches using the time and/or the

frequency domain have been proposed, and those can be subdivided in two main general

families; decision-theoretical and statistical pattern recognition approaches. Decision

theoretical approaches require a statistical description of the signals considered and

usually involve the definition of likelihood ratio tests, while pattern recognition

approaches require the definition of small sets of class features sufficient to differentiate

between the different modulation types. This section briefly reviews some of the most

recent work done in those areas.

Decision theoretical approaches are based on obtaining a statistical description of

the signals considered, and lead to the derivation of optimal classifiers using Bayes rule.

However, such optimal classifiers are usually extremely complex, and approximations



needed to obtain tractable solutions. Sub-optimal solutions were first proposed by

Polydoros & Kim to classify BPSK and QPSK signals [POK90]. This line of approach

was later extended to other modulation types by Polydoros & co-authors [CLP94,

LAP95, HUP95, CLP96]. Modulation classification schemes derived under this

approach have extremely good performances for digital modulation types with relatively

low number of states. However, these schemes usually require some type of a-priori

signal information, making the whole process less practical. Lay & Polydoros further

investigated the case of signals in ISI environments [LAP95]. Results showed good

performances when the channel is known, however performances degrade significantly

when the channel characteristics are unknown and cannot be compensated for.

Wei & Mendel also considered a maximum likelihood approach to classify phase

amplitude signals under ideal conditions, i.e., when pulses are rectangular, the additive

noise is white and Gaussian and of known power. Their work derives an ideal classifier

which can be used as a reference in non-ideal environments [WEMO]. They also

proposed a fuzzy logic modulation classifier where they investigated the performance of

M-QAM modulation schemes (M_5 32) in impulsive noise [WEM99, WEI98]. Their latter

work may fall somewhat in the category of pattern recognition approaches as they use the

constellation information directly.

Soliman & Hsue proposed to use class features statistical moments to classify CW

and M-PSK signals in additive white Gaussian noise [SOH92]. Their approach lead to an

hypothesis test based on the nth order moments of the signal phase and achieves

classification performances close to 100% for SNR levels greater than 10dB. However,

no simulation on real-world propagation models has been reported. Yang & Soliman
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later proposed a sub-optimal decision theoretic classifier for MPSK signals in additive

white Gaussian noise based on the approximation of the signal pdf [YAS97]. Results

showed better performances than in [SOH92], as more information gets actually used in

the latter work.

As mentioned before, pattern recognition type describe class information using

selected sets of features, where the selection may be done empirically or not. As a result,

this type of approach is more tractable than the decision theoretical approach, as the

designed has control over what features to select, and numerous schemes have been

proposed over the years.

Ghani & Lamontagne among others selected frequency information as class

features and a back-propagation neural network to classify FSK, BPSK, ASK, QPSK and

a few analogue modulation types [GAL93]. More sophisticated classifiers such as HMMs

have also been investigated with frequency-based class features and reported to lead to

better performances than tree-based classifiers [SKR97]. Kremer & Shields considered

time information, such as skewness, kurtosis, power, to classify 4FSK, MFSK, OQPSK,

and 8PSK in additive white Gaussian noise [KRS97]. They showed good classification

performances for SNR levels larger than 5dB.

Wavelet-based information has been used to classify modulation types. Ta

considered wavelet packet information as class features to differentiate between ASK,

2&4-FSK, 2&4-PSK modulation types in additive white Gaussian noise [TA94]. Hong &

Ho, Ho & co-authors, and Lin & Kuo among others considered the Wavelet transform to

classify QAM, PSK and/or FSK signals in additive white Gaussian noise [HPC95,

HPCOO, HOK99, LIK95]. Ta and Ho & co-authors take advantage of the wavelet
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transform capabilities to extract wideband transient information, as may occur at pulse

changes. However, in real-world scenarios, pulses are bandlimited which in turn may

make such transient more difficult to extract. Other authors have also used wavelet

coefficients as class features. However, note that the decimated wavelet transform is not

shift-invariant, which is a very important property to have in classification applications.

As a result, reported results have usually assumed perfect synchronization, which would

not be realizable in practical situations.

Azzouz & Nandi considered both hierarchical classification tree and neural

network approaches to classify analogue and digital modulation schemes. The digital

modulation types considered were those with constant amplitude such as CW M-PSK and

M-FSK, were the number of states was small (less or equal to 4) [AZN95a, AZN95b,

AZN96, AZN97]. Statistical characteristics such as the power density or the standard

deviation of the normalized centered instantaneous amplitude of the signal and others

were selected as class features. Results showed this simple scheme to have 90% correct

classification rates for signals in additive white Gaussian noise at SNR levels equal to

10dB or higher. They also show that better performances are obtained with the neural

network implementation than with the hierarchical tree implementation, especially at low

SNR levels. However, again no simulation results for signals transmitted using "real-

world" propagation channels situations were reported in their work.

Beidas & Weber considered the classification of M-FSK types in additive white

Gaussian noise using higher-order correlation quantities. They show that performances

approximate those of likelihood ratio tests in a white Gaussian noise environement

[BEW95a, BEW95b, BEW98].

5



Ketterer, Jondral & Costa proposed a two-step time-frequency approach to the

problem [KJC99]. First, the carrier frequency is estimated with autoregressive modeling.

Next, the time-frequency information provided by the Cross-Margenau-Hill distribution

[HPC95] is applied to estimate phase shifts, frequency shifts and amplitude shifts

allowing the separation of M-PSK, M-FSK and M-QAM signals respectively.

Simulations show modulation classification performance over 97% for SNR levels larger

than 10dB. Unfortunately no results were reported for simulations with "real-world"

propagation channels. Bi-spectrum information has also been proposed as a class

identification tool by Hill et. al. [HAC97].

Huo & Donoho proposed a very different method to classify 4-QAM and 6-PSK

[HUD98]. The authors proposed a classifier designed to minimize the Hellinger distance

[BER77] between the empirical distribution of the intercepted signal and the true signal

density function. The proposed scheme leads to recognition performances equal to 100%

for SNR levels equal to 15dB or higher. However, such performance requires the

knowledge of the channel model, and the recognition performances drop significantly

when dealing with unknown channels.

Histograms and amplitude and/or phase pdf information have also been selected

for classification applications. Cockburn & Hang, Schreyogg & Reichert considered

such approaches to classify between various MQAM schemes in additive white Gaussian

noise [COH97, SCR97a]. Taira considered the classification of 16&64QAM signals in

fading channel environment using the signal amplitude [TAIOO]. The author proposed an

approximation to the true amplitude pdf and showed 100% classification rates for SNR

levels over 20dB.
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The constellation shape has also been used directly in various approaches. Wood

et. al. used the Radon transform to identify the type of signal constellation [WRT98].

Mobasseri considered a pattern recognition approach and uses the constellation shape

information obtained from the received signal to estimate the digital modulation type by

applying fuzzy c-means cluster analysis [MOB00]I. This scheme works well to separate

low order constellations such as QPSK, 8-PSK and 16-QAM and provides correct

recognition of over 90% for signal-to-noise ratios larger than 5dB. However, no results

are provided for signals transmitted over real world propagation channels that might

rotate and severely distort the signal's constellation.

Matrix-based approaches have been reported by a few researchers. A SVD-based

approach to the classification of MSK and QPSK modulation schemes in additive white

Gaussian noise was proposed by Marinovich et. al [MNCXX]. In this scheme the

modulation identification is obtained from the singular values of a specific data matrix

which structure requires the symbol length information. Results show adequate

performances down to -5dB. Hero & Hadinejad-Mahram proposed to use the

eigendecomposition information obtained from a signal-based "power moment" matrix to

differentiate between MPSK, FSK, and QAM [HEH98]. However, no classification

performance is reported.

Marchand, Martret & Lacoume used cumulants and moments to build a matched

filter classification system that has an exceptional performance, close to 100% of

accurate recognition for SNR levels equal to 0dB or higher [MML97]. This classifier is

tested to identify 4-PSK versus 16-QAM but may easily be modified to incorporate more

modulation schemes. Again, no simulation on fading multipath channels is conducted.
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High-order statistics and cyclostationary concepts have been considered by

Gardner and others for modulation classification applications [SCS94, GAS88, SP096,

SP099]. Spooner proposed cyclic cumulant-based features for modulation classification,

and used these parameters to define class-specific feature matrices tested against

cataloged class feature matrices obtained from known modulation types. Results show

good classification performances for signals in additive white Gaussian noise [SP096,

CADOO]. However, Cadenazzi showed that these performances degrade significantly

when dealing with real-world signals [CADOO].

Marchand investigated a simpler scheme than that of Spooner in his dissertation

work, where he considered moments and cumulants for classifying purposes [MAR98].

He proposed a computational inexpensive cumulant-based scheme to classify M-PSK and

M-QAM signal types, and investigated the robustness of the scheme with respect to

varying level of additive noise and number of symbols. Marchand also considered

transmission (i.e., pulse shaping) filter effects, which may undermine the cyclostationary

nature of the information on which the whole classification set-up is based upon. His

scheme is based on a combination of second and fourth-order cumulants and the

classification criterion designed to maximize the difference between the modulation types

considered. Results showed that using cyclostationary information can improve

classification performances significantly when dealing with colored noise.

Swami & Sadler [SASOO] also selected cumulants for class features. They

introduced a simple hierarchical tree classifier scheme that uses second and fourth-order

cumulants to classify M-PSK, PAM, and M-QAM signals. Simulations run on BPSK,

4PAM, 4PSK, 8PSK, V32, V29, V29c, and 16QAM in additive white noise show
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excellent recognition rates for SNR levels higher than 8dB when the sample size required

to estimate the cumulants is large enough. They do not consider effects due to the pulse

shaping filter, or nonlinear transmission filters. However, they do investigate residual

channel effects, and show that larger sample size is required to compensate for them.

Their encouraging conclusion is that the method may easily be expanded to a higher level

of constellations such as 64-QAM, by increasing the order of the cumulants selected for

class features.

Finally, Barbarossa, Swami, Sadler & Spadafora recently proposed the Alphabet

Matched Algorithm (AMA), which is an iterative gradient descent scheme where the cost

function to be minimized is based on a pre-determined signal constellation structure M-

PSK and M-QAM signals [BAROO]. Their results show that the AMA is able to classify

higher order constellations (such as 64-QAM) propagated through a linear channel in

SNR levels of 30dB perfectly. This method is further analyzed and implemented in this

study [Chapter IV, Sections B & C].

C. REQUIRED SOFTWARE

MATLAB, version 5.3 was used to generate the data and conduct the simulations

while EXCEL 2000 has been utilized to store all simulation results. We attempted to

duplicate real-world conditions by selecting transmission channel models obtained from

field measurements [SPIOO]. Further details regarding the transmission channel types

considered are presented in Appendix C.
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F1I. DIGITAL COMMUNICATION SYSTEMS AND MODULATION SCHEMES

This chapter presents a brief overview of basic communication systems and

popular digital modulation schemes.

A. INTRODUCTION TO DIGITAL COMMUNICATION SYSTEMS

With the explosion in the computer industry of the last fifteen years we now have

the ability to process digital information with speeds that no one could have ever

imagined a few decades ago. The basics of a digital communication system are described

in Figure H1-1. Communication basically means transmission of binary information

sequences {bk}. Such sequences are encoded prior to transmission to make the

transmitted signal more robust to noise, interference and other channel degradations.

Next, the resulting signal dk (t) is modulated by a sinusoidal carrier and passed through a

transmitter filter to limit the signal bandwidth prior to transmission. The transmitted

signal Sk (t) does not normally reach the receiver without distortion, which can be due to

white gaussian, colored noise or other narrowband signal interferences.

This study will utilize baseband signals exclusively, as heterodyning down

transmitted signals is usually conducted at the receiver to decrease the needed sampling

rates prior to further processing. Therefore, we will assume that the carrier has been

estimated correctly and that no distortion in the received signal is produced as a result of

estimation errors in the carrier frequency.
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Figure IR-1. Digital Communication System Model.

B. DIGITAL MODULATION TECHNIQUES

1. Introduction

Almost all modem communication systems use digital modulation techniques as

they have many advantages over analog modulation schemes. For instance, digital

modulation techniques offer greater noise immunity and robustness to channel
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distortions, easier multiplexing of various forms of information (e.g. voice and data), and

greater security [MPRGOO]. Several factors influence the choice of a digital modulation

scheme. Ideally, a desirable modulation scheme provides low bit error rates at low

received signal-to-noise ratios, has a good performance in multipath and fading

conditions, occupies a minimum bandwidth, and is easy and cost-effective to implement.

Existing modulation schemes do not simultaneously satisfy all of these requirements.

Some are better in terms of the bit error rate performance, while others are better in terms

of bandwidth efficiency. As a result, trade-offs need to be made when selecting a digital

modulation depending on the demands of the particular application. For example, higher

level modulation schemes (M-ary keying) require small bandwidth but higher received

power than other schemes.

Some of the most widely used digital modulation techniques are summarized in

Table 11-1 below. This study will concentrate on 2-FSK, 4-FSK, 8-FSK, 2-PSK, 4-PSK,

8-PSK, 16-QAM, 64-QAM and 256-QAM modulation schemes.

Linear Modulation Constant Envelope Combined Linear and Spread Spectrum
Techniques Modulation Constant Envelope Modulation

Techniques: Modulation Techniques
Techniques

BPSK: Binary Phase BFSK: Binary MPSK: M-ary Phase DS-SS : Direct
Shift Keying Frequency Shift Keying Shift Keying Sequence Spread

Spectrum
DPSK: Differential MSK: Minimum Shift QAM: M-ary FH-SS : Frequency
Phase Shift Keying Keying Quadrature Amplitude Hopped Spread

Modulation Spectrum
QPSK: Quadrature GMSK: Gaussian MFSK: M-ary

Phase Shift Keying Minimum Shift Keying Frequency Shift Keying

Table II- 1. Popular Digital Modulation Schemes.
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2. M-ary Frequency Shift Keying Modulation Scheme

M-FSK (or M-ary FSK) transmits digital data by shifting the output frequency

between M predetermined values (i.e., states). M-FSK is not particularly spectrally

efficient, but offers advantages such as immunity to amplitude noise, bit rate higher than

baud rate, and constant transmitter power [GREOO]. M-FSK requires less transmitted

power for the same information rate than other digital modulation schemes do because it

does not contain any AM components, as is the case for example for M-QAM. Thus, M-

FSK allows transmitter power amplifiers to operate close to their saturation levels. In M-

FSK modulation the M different frequencies on which the transmitted message is

quantized are given by:

sk(t) = g(t)COS[Z (nc +k)t ] O~t<5T,k =1,2,..., M, (2.1)

where g(t) is the signal pulse shape, T is the symbol duration, and f = n,/2T is the

carrier frequency for a fixed integer n, [W1L99].

3. M-phase Shift Keying Modulation Scheme

The most common form of modulation in digital communication is M-ary phase

shift keying (M-PSK). With this method, symbols are distinguished from one another by

the phase changes, while the amplitude remains the same. A digital symbol is represented
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by one of M different phase states of a sinusoidal carrier. The typical M-PSK waveform

is given by:

Sk (t) = g(t) cos(21fct + 2-1(k - 1)),

M

(2.2)

Ot<T, k =1,2,...,M,

where g(t) is the signal pulse shape, M is the number of the possible phases of the carrier,

T is the symbol duration and f, is the carrier frequency [PR095, pp. 177,eq.4.3-11].

Figure 11-2 plots the constellations for 2-PSK, 4-PSK, and 8-PSK modulation schemes.

I -

* I *

- -- ------------------------------ *- - - - -- -------*
* I *

4-4

Figure 11-2. 2-PSK, 4-PSK and 8-PSK constellations.
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4. M-QAM Modulation Scheme

QAM is designed to transmit two separate signals independently with the same

carrier frequency by using two quadrature carriers cos(2zfct) and sin(2zfct). These two

separate modulated signals are then added and transmitted. This structure of QAM allows

for M discrete amplitude levels (M-QAM), and thus permits a symbol to contain more

than one bit of information. The general form for a M-QAM signal is given by:

Sk (t) = akg (t) cos(2zfct) - bk g(t) sin(2,zfct),

O<_t•<<T, k =1,2,...,M , (2.3)

where g(t) is the signal pulse shape, and ak and bk are the information-bearing signal

amplitudes of the quadrature carriers [PR095, pp.179, eq.4-3-19]. 16-QAM, 64-QAM

and 256-QAM constellations are shown in Figure 11-3 below.

QAM is standardized in terms of the number M of discrete levels number which is

chosen to be a power of 2 so that each symbol can be represented by a specific number of

bits. For example, in 256-QAM, the number of discrete levels M=256=28, and every

symbol is encoded with 8 bits. Therefore, higher order M-QAM schemes are much more

spectrally efficient, being however, quite susceptible to noise and fading. As a result,

higher order M-QAM schemes are more often used nowadays in cable transmission

systems rather than wireless systems where transmission degradation may be worse.
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Figure 111-3. 16-QAM, 64-QAM and 256-QAM constellations.
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5. Pulse Shaping Filters

Most digital communication signals, especially wireless ones, have limited

bandwidth available to allow for simultaneous transmission of several messages. As a

result, the modulated signal is passed through a transmission filter prior to transmission.

In addition, transmission channels are usually band-limited, which leads to inter-symbol

interference (ISI) in the transmitted signal. Therefore, it is important that the transmission

filter be designed not to further increase the amount of ISI in the transmitted signal.

Raised cosine filters are designed so that the ISI introduced by the filter band-limited

structure is equal to zero when sampled at correct sample points [EVAOO]. The raised

cosine impulse response and frequency response are respectively given by:

x(t) =sin c(-T
2 1_2it) 2  (2.4)

l-fl

L T<f<

2T

X(f)-T{1-cos[•(flf)j} 1-l8 < f <l+ (2.5)2 ) T2T 2T(25

0 f > ,l + ,8

2T

1.8



where T is the symbol period and f8 c [0,1] is called the roll-off factor, or excess

bandwidth. Figure 11-4 shows the raised cosine filter spectral characteristics and the

corresponding pulses for 3=0, 0.5 and 1.
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III. WIRELESS TRANSMISSION CHANNELS

Chapter HI briefly discussed digital modulation fundamentals. Chapter III,

considers issues relevant to radio-wave propagation.

A. DESCRIPTION

Wireless environments have some inherent peculiarities concerning the signal

transmission. There is a certain degree of randomness incorporating all those natural and

sometimes unpredictable factors that might exist, such as geographical terrain,

atmospheric conditions, temperature, other transmissions, even relative speed between

transmitter and receiver. There are two main types of approaches to model a wireless

transmission channel. A possible approach is to use statistical methods based on

propagation laws. The other one is to apply empirical methods, by taking direct

measurements in different typical wireless environments. However, no matter which

philosophy is adopted, two main channel model categories exist; small scale fading and

large scale fading transmission channel models. Both model types are considered next.
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1. Small Scale Fading

Two different kinds of small scale fading exist in wireless propagation. Fading

due to the "time spread", and fading due to the "doppler shift".

a) "Time Spread" Fading

In a real world situation transmitted radio signals follow different paths

due to multipath reflection. Different propagation paths result in different delay times for

each path, and therefore a time spread between the first and the last ray can be measured.

This phenomenon may cause intersymbol interference (ISI), as a delayed symbol

overlaps with another one that follows. A channel subject to time spread looks like a

series of pulses in the time domain, as shown in Figure 111-1.

F.T.

.. . . ..

Time Frequency

Figure III-1. Time Spread Effect in Small Scale Fading.
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b) "Doppler Shift" Fading

Whenever there is a relative speed between a transmitter and a receiver,

the carrier frequency at the receiver is shifted from that at the transmitter due to the

Doppler effect. This frequency shift is given by:

fd - Vrlativ fc (3.1)
C

where Vrelarive is the relative speed between the transmitter and the receiver,

c is the speed of light and fc is the carrier frequency [RAP99, p.165]. As a result, a

broadening of the signal spectrum is observed. For the case of a sine wave, this frequency

dispersion can be characterized by the U-shaped power spectrum given in Equation 3.2

and shown in Figure 11I-2 [HAA96]. The frequency range where the power spectrum is

nonzero defines the Doppler spread fd.

2 1 IfI -
/fd 2 2

Sc()f (3.2)

0 Ifl 4f.
2

so(f)

-f, 2 +f, 2 f

Figure III-2. PSD of a Sine Wave with a Doppler Shift.
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2. Free Space Path Loss

Free space path loss concerns the attenuation Qf the signal strength with the

distance from the transmitting source. In free space propagation the relationship between

the transmitted and the received power is given by:

P,=P,. G,* GR*K1 2  (3.3)

where P, is the received power, P, is the transmitted power, G, is the transmission gain

and GR is the reception gain. Equation 3.3 shows that the strength of the received power

of a radiowave falls off as the inverse square of the distance between the transmitter and

the receiver.

B. TRANSMISSION CHANNEL MODELING

The implementation of a realistic transmission channel is essential for the

performance evaluation of every signal classification method. Such a specification is

essential as the transmission channel can severely affect the transmitted signal either by

increasing the inter-symbol interference or by lowering the effective SNR level. This

study will solely discuss small scale fading situations, that is, time spread fading and

Doppler shift fading.

24



1. Additive White Gaussian Noise Channel Model

The most common textbook channel is the additive white Gaussian noise

(AWGN) channel, where the desired signal is degraded by thermal noise associated with

the physical channel itself and/or other hardware used in the link. The AWGN-only

channel is close to reality in some cases, such as space communications and forward path

cable television (CATV).

2. Raised Cosine Channel Model

Rappaport [RAP, p.146, Eq. 4.12] introduces the impulse response of a multipath

channel when receiver and transmitter are not in relative motion. Ideally this impulse

response consists of a series of delta functions with decaying magnitudes (Figure fI-1).

For all practical purposes these delta functions may be replaced with raised cosine

functions that can be easily implemented in the real world. Time-spread between the

multiple ray-paths and attenuation due to multipath propagation will be the two

parameters that this channel takes into account. The analytic expression for the three-ray

channel transfer function is given by:

SCOS(EL o ('a1 o(xOt-' (3.4)

"T °t 4f2(,) T" 4 '82(t -d,)2
T2 T 2 T5
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where T is the symbol duration, P3 is the filter's roll-off factor, mrh is the attenuation of

the 2nd ray, d, is the time difference between the I" and the 2nd ray, m2 is the attenuation

of the 3rd ray and d2 is the time difference between the 1st and the 3rd ray. Figure 111-2

plots the impulse response and the spectrum of a 3-ray raised cosine channel model.
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Figure HI-3. Impulse response and spectrum for the 3-ray raised cosine channel model,
T=8xl1-6sec,d =20x 10-6 sec, d2 =200xlO-6 sec, 3=0.35, mý =-3dB, m2 =-6dB.

3. Rayleigh Channel Model

Rayleigh fading distribution is often used in wireless mobile communications to

describe the statistical time varying nature of the received envelope of a flat fading

signal, that is, a signal that has all ray paths attenuated uniformly. This means that there is

no line of sight path between the transmitter and the receiver [LAU94]. This model may

take into account the fact that the transmitter and the receiver might be in a relative
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motion, therefore time spread and Doppler shift may also be considered. The generic

discrete expression of the received signal in a Rayleigh channel environment is given by:

rk =" o~k k+ nk , (3.5)

where ak is a Rayleigh random variable, Sk is the signal sequence and nk is noise. The

envelope of a Rayleigh faded signal is shown in Figure II-4 [RAP99, pp. 173, Figure

4.15]. Deep fades occur when multipath components cancel one another. For the case

where there are two principal components, this occurs when the difference in path lengths

is multiple of half a wavelength. This is the cause of selective fading when the signal has

finite bandwidth.
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Figure 111-4. Envelope of a Rayleigh faded signal, f, = 900MHz, receiver

speed= 120Km/hr [RAP99, Figure 4.15].

The most popular model for simulating a Rayleigh fading signal is Clarke's model

[RAP99, pp. 177-185]. This model assumes a fixed transmitter and a moving omni-
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directional receiver. Clarke showed that the power spectral density S(f) of the electric

field in a Rayleigh fading environment, is generally given by Equation 3.6 [RAP, p. 180,

Eq. 4.76]:

A[p(a)G(a) + p(-a)G(-a)]

fd

where fd is the Doppler shift due to receiver's motion, f, is the carrier frequency, A is the

average received power with respect to an isotropic antenna, G(c) is the azimuthal gain

pattern of the mobile antenna and p(ox) is the received power within an angle cx.

4. Ricean Channel Model

For Ricean fading there is a strong, constant component to the signal, in addition

to the multiple random components of Rayleigh fading, due to multipath propagation

[RAP99, pp. 174-176]. Ricean fading is typical in line-of-sight situations, where there is

a direct path between transmitter and receiver, as well as reflecting or scattering

phenomena. The Ricean case is often considered a characteristic of short-term indoor

propagation, while the Rayleigh model fits well with outdoor, short-term propagation.
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IV. INTRODUCTION TO SIGNAL EQUALIZATION

Chapter III presented an overview of the effect of the wireless environment on the

transmitted signal. In real world situations the transmission channel is a critical factor that

may cause unrecoverable distortions on the signal, especially in higher order digital

modulations, such as in 256-QAM, where the effect of a propagation channel may

corrupt the signal constellation even at high SNR levels. Figure IV-1 shows a 256-QAM

sequence constellation obtained for SNR equal to 40dB at the transmitter. Figure IV-2

presents the constellation obtained by passing this 256-QAM signal through a severe

urban area channel model [Appendix C, channel 11]. To compensate for this distortion,

modem receivers use signal equalization extensively, in an attempt to undo the effects of

the propagation channel. This chapter will discuss two types of signal equalization: the

Constant Modulus Algorithm - Fractionally Spaced Equalizer (CMA-FSE) blind

equalization method and the Alphabet Matched Algorithm (AMA) equalization method.

A. THE CMA-FSE ALGORITHM

The constant modulus algorithm with fractionally spaced equalizer (CMA-FSE)

belongs to a category of equalization methods called blind equalization methods which

are designed to undo the channel effect without any knowledge of the channel itself. The

CMA-FSE is the integration of two different parts: the constant modulus algorithm

(CMA) and the fractional spaced equalizer (FSE).
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256-QAM constellation SNR=40dB
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Figure IV-1. Ideal 256-QAM constellation; no propagation channel effect.
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Urban propagation channel with three multipathe

Figure IV-2. 256-QAM constellation; after signal transmission through nonlinear
channel 11. Channel specifications given in Appendix C.
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1. Constant Modulus Algorithm

The Constant Modulus Algorithm (CMA) is a stochastic gradient algorithm,

designed to force the equalizer weights to keep a constant envelope on the received signal

[HAY96, pp. 365-372, RAP99, pp.304]. Thus, it is designed for problems where the

signal of interest has a constant envelope property. However, extensive simulations have

shown that it still can be used in amplitude-phase modulation types with success, when

the number of states is low, and is routinely applied in today's applications. As a result,

the CMA is expected to have better performance for M-FSK and M-PSK rather than M-

QAM types. The CMA cost function is given by:

J(n) = E{(Is(n)1 2 _ 7)21} (4.1)

where s(n) is the signal to equalize and y is a positive real constant called the "dispersion

constant" defined by:

r"- Es,2,4 (4.2)

where Es.44and Es2,22 are the 4th and 2nd order moments respectively [CJJOO]. These

moments are described further in Chapter V. The cost function J(n) is minimized

iteratively using a gradient-based algorithm with update equation:

h(n + 1) = h(n) -jtVJ (n), (4.3)

where h is the tap-weight vector and p is the step-size parameter [HAY96, pp. 794-795].
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2. Fractional Spaced Equalizer (FSE)

In any standard CMA equalization system, the coefficient taps are baud-spaced

that is, the sampling frequency of the equalizer is the baud frequency of the received

signal. However, it is often desired to use an equalizer with taps spaced at a fraction of

the data symbol period T, or sampled at a multiple of the symbol rate. This configuration

gives the extra degrees of freedom to perform additional filtering operations such as

matched filtering and adjustment of sampling phase [HAJ99]. Such a scheme is called

fractional spaced equalization (FSE). In a fractional spaced equalizer, the channel model

is sampled usually at twice the symbol rate and the equalizer output is evaluated only at

T-spaced intervals to obtain the equalized signal.

3. CMA-FSE Scheme

The implementation of a fractional spaced equalizer using the constant modulus

criterion combines the advantages of both concepts into one system. This system is

shown in Figure IV-3. The propagation channel is assumed to be linear and time

invariant. Therefore, the channel e is modeled with a time-invariant finite impulse

response (FIR) filter with coefficients c = [Co,. ... Q T The equalizer is also described

by a N-coefficient vector f =[fof,...,fNl ]T and the overall system response is

described by the P-coefficient vector h=[ho,lh,...h P_]T. The filtering operation

performed by the equalizer can be viewed as the convolution of the sampled received
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sequence with the equalizer coefficients. Therefore, the overall system response is

h = C f, where C is the P x N channel convolution matrix given by Equation (4.4)

below [JA098, pp. 1930, Eq. 5].

Co

C] C0

C2  C 1  C0

C2 CC1
C = cQ _1 c2 ". co (4 .4 )

CQ-1 C1

CQ ". C2

CQ-I

PxN

System response h

Figure IV-3. CMA-FSE Implementation Block Diagram.
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4. Example

The CMA-FSE algorithm is tested on 4-PSK, 16-QAM, 64-QAM and 256-QAM

modulation type signals where the SNR is set to 40dB for all cases. The purpose of this

test is to find the limits of the highest constellation order that the CMA-FSE algorithm is

able to clear. The MATLAB-based implementation of the CMA-FSE algorithm was

developed by researchers at the Blind Equalization Research group, Cornell University

and the code is reproduced in Appendix D [HATOO]. Figure IV-4 shows the impulse

response of the propagation channel that the CMA-FSE scheme attempts to undo the ect

of. This channel is a 2-path channel and is a typical example of a rural area environment.

1.2:

)j

0O.2 J

1) 05E 200 250 300

Figure IV-4. Rural area propagation channel impulse response.

34



4-PSK before CMA-FSE
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Figure IV-5. 4-PSK constellations; before and after applying the CMA-FSE algorithm.
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16-QAM before CMA-FSE
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Figure IV-6. 16-QAM constellations; before and after applying the CMA-FSE algorithm.
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Figure IV-7. 64-QAM constellations; before and after applying the CMA-FSE algorithm.
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256-QAM before CMA-FSE
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Figure IV-8. 256-QAM constellations; before and after applying the CMA-FSE
algorithm.
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Simulations show that the CMA-FSE implementation cancels the channel effect

almost perfectly for low order modulations such as 4-PSK modulation, as illustrated in

Figure IV-5, and up to 16-QAM modulation, as illustrated in Figure IV-6. Performances

degrade for higher constellations. Figure IV-7 shows that the constellation type is still

recognizable for 64-QAM, but Figure IV-8 indicates that CMA-FSE fails for 256-QAM.

This is to be expected as this scheme was designed for constant magnitude modulations

and not for QAM schemes, especially those of higher order.

B. THE ALPHABET MATCHED ALGORITHM (AMA)

Applying the CMA for blind equalization is an efficient way to cope with QAM

signals with relatively low order constellations. However, a different type of processing is

needed to recover QAM signals with high constellation types. A possible alternative is to

implement a non-blind approach which takes advantage of the specific information

contained in a given signal type, such as constellation centers for example. Such an

approach has been considered recently by [BSC98] and [BAROO] and will be discussed

next.

1. Introduction

The Alphabet Matched Algorithm (AMA) is an equalization scheme that uses a-

priori knowledge of the constellation centers for QAM signals with a specific number of
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states M. This approach was first reported by [BSC98] for M-QAM of low constellation

orders [BAROO]. Barbarossa et. al. modified the original AMA to make it more robust in

high constellation environments [BAROO]. The AMA implementation consists of a bank

of FIR equalizers where each one is matched to a specific constellation type, as shown in

Figure IV-9. The equalizer that achieves the smallest cost function after convergence

indicates the modulation type [BSC98].

ýCon tCon I ht •-...1(n)

lConstellation N6n) Cos fimc(n) 2

Figure IV-9. AMA classifier.

Let us examine a single branch of Figure IV-9 only, as similar findings hold for

the others. Assume the L-tap FIR equalizer weight vector is denoted by:

h(n) = [h k(n),..., hL,_ (n)]. (4.5)

Applying the equalizer filter to the input signal sequence s(n) leads to the

equalizer output z(n):
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L-I (4.6)
z(n) = h,(n).s(n-l).

1=0

The basic difference between the CMA and AMA implementations lies in the

definition of the cost function Jk (n) associated for the kth constellation defined as:

M -I(n)-Ck. (i 2 (4.7)
Jk (n)=E {1- e 'V2Ia

i=I

where M represents the total number of centroids for the kth constellation, z(n) is

the output of the equalizer, ck (i) is the ith centroid of the kth constellation, and a is a

constant chosen so that:

e"+c(l)-c(i) 2/20"2 = 0, Vl • i. (4.8)

Basically, Equation (4.8) determines the allowed distance between the centroids

and the equalizer output. The smaller the value of a, the bigger the penalty of the cost

function on the equalizer output. Figure IV-10 shows the AMA cost function obtained for

a 64-QAM constellation modulation type.

As before, the cost function Jk is minimized iteratively using a gradient descent

algorithm. The update equation for the filter coefficients is given by:

_4 (n+l)=_k(n)-plVJk[z(n)], k=l,...P, (4.9)

where/u is the step size, and P is the total number of QAM constellation considered. The

gradient derivation is presented in Appendix A, and the final expression is given by:
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S~0.5

-0.5 -0.5

-1 .1

Figure IV-10. AMA cost function for 64-QAM with a-=0.05.

M h -T _ (j)1'

VJkC )= e 20.2 (hs ck (i))* .S (4.10)

i=1

where s = [s(n), s(n -1),... s(n - L)]t is a portion of the input signal with length equal to

the length of the filter equalizer.

2. Example

The AMA algorithm was tested on 16-QAM, 64-QAM and 256-QAM modulation

signals with a SNR level of 40dB. Each signal was passed through the same propagation

channel

, as in the earlier CMA-FSE simulations considered in Section A. Next, the CMA-

FSE algorithm was applied to the resulting transmitted signal to provide a good
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initialization to the AMA. Such a two-step process was followed as results have shown

the AMA has good local convergence but needs good initialization [BAROO, p. 177].

Note that the CMA is known to have good global convergence properties when the

symbol set is close to being constant modulus, even when the initialization is poor.

Therefore, cascading both schemes should allow for a more robust modulation type

decision. As a result, the AMA algorithm is initialized when the CMA-FSE converges.

Figures IV-10, IV-11 and IV-12 show the simulation results. The MATLAB

implementation of the AMA algorithm is presented in Appendix D.

equIal =Pd w6iftefcir.

08 4

n-

-1 -C.8 --. 6 -C. -0.2 0 0.2 0.4 0 0.=

-1 .

-I .• -z-o ,.- o -

-1 .0 .1 0 1 IJ.

Figure IV-11. 16-QAM constellations; before and after applying the AMA algorithm.
SNR=40dB, step size .t=0.0O1, o=O. 174, 2000 samples, 21 equalizer taps.
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Figure IV- 12. 64-QAM constellations; before and after applying the AMA algorithm.
SNR=4OdB, step size ji=-O.0 1, a=0. 1174, 2000 samples, 21 equalizer taps.
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Figure JV-13. 256-QAM constellations; before and after applying the AMA
algorithm. SNR--40dB, step size jt=0.01, a=0.05, 2000 samples, 21 equalizer taps.
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Results show the AMA gives very good results in the first two cases. Even in 256-

QAM, where the CMA-FSE has no effect, the AMA algorithm recovers a portion of the

constellation. Simulations showed that the key to the AMA algorithm convergence is the

value of a and the step size. Recall that the parameter a controls the sharpness of the cost

function peaks. Simulations showed that some samples of the signal can potentially be

assigned to the wrong centroid when a is selected too large, due to overlap of the cost

function nulls (Figure IV-l0, In addition, the AMA may not converge, when the step

size is chosen too large or to,:, 'mall.

46



V. MOMENTS AND CUMULANTS

Chapter IV discussed two different equalization schemes designed to minimize

channel distortions effects (CMA-FSE and AMA algorithms). This chapter focuses on

identifying features that can be used to identify signals subjected to various types of

distortion. As mentioned earlier in Section 1LC, higher-order statistics have been

extensively used to extract unique signal features. Higher-order statistics is a field of

statistical signal processing which makes use of additional information to that usually

used in 'traditional' signal processing measures, such as the power spectrum and

autocorrelation function. Advantages of higher order statistics include the ability to

identify non-Gaussian processes and non-minimum phase systems, and to detect and

characterize signal non-linear properties. Higher-order statistics lead to the definition of

two directly related parameters: statistical moments and cumulants, which are described

next.

A. MOMENTS

1. Definition

Probability distribution moments are a generalization of the concept of the

expected value, and can be used to define the characteristics of a probability density
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function. Recall that the general expression for the i"' moment of a random variable is

given by:

ui= f (s-/u'p f (s)ds, (5.1)

where p. is the mean of the random variable. The definition for the ith moment for a finite

length discrete signal is given by:

N

Ali = (sý -1)' f(sk), (5.2)
k=I

where N is the data length. In this study signals are assumed to be zero mean. Thus Eq.

5.2 becomes:

/i=i fS f(Sk)" (5.3)
k=1

Next, the auto-moment of the random variable may be defined as:

E,.'+qp =E[sP (s*)q] , (5.4)

where p and q represent the number of the non conjugated terms and number of the

conjugated terms, respectively, and p+q is called the moment order. For example, for p=2

and q=O, Equation 5.4 becomes:

N

-Eý.2,2 =E [s2(s*)O E E[S2] = =U Sk~f (Sk), (5.5)
k=1

which is the second moment or the variance of the random variable. In a similar way,

expressions for E,.2, 1, E , E,,8.4 , etc... may be easily derived. Note that the normalized

moments E,.33 and E. 44 are called Skewness and Kurtosis respectively. Skewness is a
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measure of the symmetry of the pdf, whereas Kurtosis is the degree of peakedness

(density of peaks) of the pdf.

2. Explicit Calculation of Major Moments

Selecting second or higher order moments has already proved to be promising to

characterize communication signals, as they may be used to describe the shape of the pdf

of a distribution completely [MAB97]. In a sense, the sequence of moments is analogous

to the components of a Fourier sequence; the first few terms describe the general shape

and the later terms add up to more detail. Therefore it is useful to derive expressions that

give some commonly used higher order moments.

Assume a zero mean discrete base-band signal sequence of the form

s. = + j - bk. Using the definition of the auto-moments (Equation 5.4), the expressions

for moments of order 2, 4, 6 and 8 may be easily derived. Complete derivations are given

in Appendix B, and the results are summarized below in Table V-1.

B. CUMhULANTS

1. Definition

Consider a scalar zero mean random variable s with characteristic function:

f (t) =E lei} 1 (5.6)

49



Expanding the logarithm of the characteristic function as a Taylor series, one

obtains:

k2 (it)2 k_(it__

log f (t) = ki (it) +5 r (.7)

ORDER 2 Es,2,2  E [a2 - b2 ]

Es,2,1 E[a2 +b2]

ORDER4 Es,4,4  E[a4 +b4_6a2b2]

E_,.,3 E[a' -b ]

Es,4,2_ E[a 4 +b4 +2a b2b

ORDER 6 Es,6.6  E[a6 - b6 + 15a2b _4 15a4b2]

Es,6,5  E[a6 +b6 -5a 2b 4 -5a4b2]

Es,6,4  
E[a6 -b 6 -a 2 b4 +a'b2]

Es,6,3  E[a6 + b6 + 3a 2 b4 + 3a4b2]

ORDER 8 Es,8,8  E[a8+b -28a 6b 2 + 70a4b4 - 28a2b6]

Es,8,7  E[aa-b'-14a6b2 +14a2b61

Es,8,6  E[a' +b8 -4a 6b 2 -10a 4b4 -4a2b6]

Es,8.5  E[aS -b8 +2a6b2 -2a2b6]

Es,8,4  E [a8 + b+4a6b 2 + 6a4b4 + 4a2b66

Table V-1. Statistical moments; zero-mean sequence of the form sk = a, + j. bk

The constants kr in Eq. 5.7 are called the cumulants (of the distribution) of s [HYYOO].

Note that the first three cumulants (for zero-mean variables) are identical to the first three

moments:
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k= E{s}

k2--E S2 =- ,2,2 (5.8)

k3 = E{s}= E=,,3 .

The symbolism for the nth order cumulant is similar to that of the nth order

moment. More specifically:

L--, (5.9)
terrms q terms

2. Relation Between Cumulants and Moments

The nth order cumulant is a function of the moments of orders up to (and

including) n. Moments may be expressed in terms of cumulants as:

E[s1 ... s] = YCun[{s} ]...Cumn[{s j.•], (5.10)
"Vv

where the summation index is over all partitions v = (v,,...,Vq)for the set of indexes

(1,...,n), and q is the number of elements in a given partition. Cumulants may also be

derived in terms of moments. The nth order cumulant of a discrete signal s(n) is given by:

5ev, j (5.1I)
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where the summation is being performed an all partitions v = (v.,.. .Vq) for the set of

indices (1,...,n). A simple application example for Eq. 5.11 is presented next.

a) Example

Assume n=1. In such a case, only one partition v, can be defined.

Therefore, q=], and equation (5.11) leads to:

Cum[s1] = (-1)-(1 - 1) !E[sl] * Cum[s,] = E[sl]. (5.12)

Assume n=2. In such a case, the available set of indexes is I and 2, and

two different types of partitioning may be obtained for that set. Thus, v = (V ,v2). The

partitions are:

"* (1,2) with q=1,

"• (1), (2) with q=2.

Therefore, equation (5.11) becomes:

Cum[s1 ,s2] = (-l)'- (1- 1)!E[s~s2] + (-1)2-1 (2 - 1)!E(sI )E[s2] (5.13)
Cum[s1 ,s 2] = E[ss2] - E(s, )E[s2].

Finally, assume n=3. In such a case, the available set of indexes is (1,2,3),

and four different types of partitioning may be obtained for that set.

Thus, v = (v.,v2 ,v3 ,v4). These partitions are:

& (1,2,3,) leading to q=1,

* (1), (2,3) leading to q=2,

* 2, (1,3) leading to q=2,

* 3, (1,2) leading to q=2,
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(1), (2), (3) leading to q=3.

Therefore, Equation (5.11) becomes:

Cum[s1, s2, s3] == (- 1) 1(1-1)!E[ss2sj] +

"+ (_1)21 (2-1)!E[sj]E[s2s3] +

"+(_1)2-1(2-1)!E[s2]E[ss3]j+

"+ (_1)2-1 (2-1)!E[s3]E[ss,_] + (5.14)

"+ (-1)-1 (3-1)! E[s, ]E[s, ]E[s3 ]

Cumn[s, s2, sý ] - E[s, s2sý3] - E[s1 ]E[s2s3 ] - E[s2 ]E[s1S3 I - E[s3,]E[sls2] +

+ 2E[s,]E[s2]E[•s .

Marchand computed similar cumulant expressions up to the 8th order

[MAR98, pp. 173-174], and these are presented in Table V-2 below.
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Order 2 ql2,2 -F,, 2,2

C2,2 1  -EF,.,

Order 4 l,4,4 = E,443ý,,

Cl,4., = 'E,,4 ,3 - 3E1ý, 2,2 ý,.2 ,

C, 4,2 = FEý, 4 .2 - Fý,2 ,2  ',2 'I

Order 6 C7, 6,6 =Eý,6 ,6 -1SF,, 2 Eý,4,4 +30E,,j2

Cý',6 5 =E-,6 .5 - 1OE,2 ,2E, 4 3 - 5E,ý2 ,1E, 4 .4 + 30E.2,2 2 k 2.1

q, 6 .4 'F,.6,4 -F',. 2,2 E,,44- 8Eý,.2.1E,,4 3 - 6E,ý2 ,2E, 4,2 ,,22 +

+ 24Fý,2 .12E,12.2

q63 9,A - 6E,,2,2E ,.43 -9ý,.fv42 + 8,2.2 2 s.j+ '2.1 3

Order 8 Cl8, =Eý-88 -5ý, 2 -630E, ,.24+ 420'E,22 2 E,44

=E,97- 35E,-4.4 ý,.43-630E,- 2 .2
3E, 2 ,1 + 21OEs,4,4 ,,2.2E,2 1

+ 2lOE'ý,2,2E, 43

.,~6 9,,8.6 -15Eý, 4 ,4Eý,42 -209,,4 .3 2+30E,44, 22 +62

±240E, 4,3Eý,2.1E ,.22 +÷90Ek,A.2E 2 22 _-90E 2,2.4 -540E,ý, 2 Lý, 2.E,2

- g .441,,3- 9.4,3 ,.4.2 + .4',A. .s2,2 2 2 g,4,3 s.Iý21

+ 180E,ý4.2E,.2.E, 2,2+3E 4 E2 E 1 -2709,,2 .2 
3E, 2.1

C:.84 =4,. -9,4 ~2- 18E40 2
2 _16gE4.32-_54g. 2.24144ga,4-432ER, 2

2E .Z2

+12-EA 4Eg~2 +96%EE,9,214ý. F ]+7,E,, 2Eý 2

+i96E,4 A2,.zA,

Table V-2. Relationships between cumulants and moments [MAR98].
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3. Transformations of Moments and Cumulants

The behavior of higher order moments and cumulants to various transformations

is an important factor in determining how useful these quantities may be to characterize

signals in systems.

a) Translation

The only effect of translation on the received signal is only the mean

changes. The variance and all the higher order moments or cumulants remain unaffected.

b) Rotation

The rotation of the received signal's constellation, due to multipath or

other distortions, affects the relative variances and higher order moments or cumulants,

though certain other parameters such as the eigenvalues and the covariance matrix are

invariant to rotation.
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VI. INTRODUCTION TO NEURAL NETWORKS

Chapter V discussed the use of higher order statistics as features for digital signal

classification. This chapter will give a brief overview of neural networks that will be used

to process some of these features in order to identify the various digital modulation

sequences. Neural networks are iterative, nonlinear schemes that attempt to imitate the

way a human brain works. Rather than using a digital model, in which all computations

manipulate zeros and ones, a neural network works by creating connections between

basic processing elements called neurons. The organization and weights of the

connections determine the output of the neural network.

A. BIOLOGICAL NEURON MODEL

The brain is a collection of about 10 billion interconnected neurons, where each

neuron is a cell that uses biochemical reactions to receive, process and transmit

information. Figure VI-1 shows a rough drawing of a biological neuron. A neuron's

dendritic tree is connected to a thousand neighboring neurons. A positive or negative

charge is received by one of the dendrites when one of those neurons fires. The strengths

of all the received charges are added together through the processes of spatial and

temporal summation. Spatial summation occurs when several weak signals are converted

into a single large one, while temporal summation converts a rapid series of weak pulses

from one source into one large signal. The aggregate input is then passed to the soma
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(cell body). The soma and the enclosed nucleus do not play a significant role in the

processing of incoming and outgoing data. Their primary function is to perform the

continuous maintenance required to keep the neuron functional. The part of the soma that

does concern itself with the signal is the axon hillock, If the aggregate input is greater

than the axon hillock's threshold value, then the neuron is energized, and an output signal

is transmitted down the axon. The strength of the output is constant, regardless of

whether the input was just above the threshold, or a hundred times as larger.

-- Synapse

Ax on

Cell body

Dendrites

Figure VI- 1. Schematic drawing of a biological neuron.
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B. ARTIFICIAL NEURON MODEL

Artificial neurons may be represented by very simple models even though

biological neurons are quite complicated, as illustrated in Figure VI-2. The artificial

neuron can have any number of inputs pi which are each multiplied by a weight wi

representing the strength of the contribution to the neuron. Then, all weighted inputs are

summed and biased with a value b. This bias is an additional weight associated to a

constant input taken equal to one. Bias parameters add additional flexibility to a network

by allowing the network hyperplane decision boundary not to be constrained to pass

through the origin. Such a constraint usually results in performance degradations, and for

this reason neural network implementations most often include bias terms.

In addition, each neuron has a transfer function f that transforms the sum of all

weighted inputs to give the final neuron output a. A large variety of linear or nonlinear

transfer functions may be selected, and the specific choice depends upon the exact

application the neuron is built for. A list of the most common transfer functions is shown

in Table VI- 1. A neural network usually consist of many interconnected neurons that

formn serial processing layers, as shown for example in Figure VI-3 which illustrates a

feed-forward network. Numerous other configurations exist and further details may be

found in [HDB96, Section 19.14].
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ZAavm nIN7UT/OUTTUT
RELATION

Hard Limit a-0 <

a=l n; 0

Symmetrical Hard Limit a=-1 <0
a---I •>--0

Line ar

Saturating Linear a = 0 <0
a=n 0_:5 ":5
a-,1 7Z>,1a=l ,i>l

Symmetric Saturating a.-- 22 < -1

L i n e a r a -y - 1 --" -< 1
e=l ,,>I

Log-Sigmoid 1

Hyperbolic Tangent _ -
Sigmoid a

Positive Linear a-0 n<0
a-" 0-n

Competitive w0=I neuron with max n
Io7O all other neurons

Table VI-1. Possible activation functions.

C. NEURAL NETWORK TYPES

Many different types of neural networks can be designed to perform a specific

task. Some of the more popular types include the multilayer perceptron [HDB96, Section

11-2] which is generally trained with the backpropagation algorithm [HDB96, Section

11-7], learning vector quantization [HDB96, Section 14-16], radial basis function

[HDB96, Section 12-2], Hopfield [HDB96, Section 3-12], Kohonen [HDB96, Section 13-

15] and others.... Another approach to classify neural network types is by learning (or

training) type, as some neural networks employ supervised training while others are
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referred to as unsupervised. In supervised implementation the network is trained using

labeled data, i.e., fed with input data with associated known a-priori target outputs.

Unsupervised algorithms do not take advantage of labeled data. They essentially perform

clustering of the data into similar groups based on the input features characteristics.

In this work, it is important to note that the overall classification process is based

not on one general backpropagation network trained on all possible schemes under study,

but on a sequence of several basic networks, using one or two features each, to

differentiate between various subsets. Further details on the overall classification scheme

are presented next in Chapter VII.
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VII. DIGITAL MODULATION CLASSIFICATION SCHEME

Chapter VI reviewed the main concepts behind multi-input neural networks.

Chapter VII discusses the specific overall classification scheme derived to differentiate

between the various digital modulation schemes considered in this work. Note that we

take into account effects due to additive Gaussian noise and multi-path environment. Our

classification scheme combines a hierarchical approach, where one or two specific

features are used to separate between given sets of classes.

The features selected to differentiate between the various digital modulation

schemes considered in our work are a combination of moments and cumulants. We

discussed in Chapter V the concepts of higher-order moments and cumulants, and

reviewed earlier work proposed by Marchand who investigated a cumulant-based

modulation classification [MML97]. Specifically, Marchand calculated theoretical values

for moments and cumulants up to the 8t order for 2-PSK, 4-PSK, 8-PSK, 16-QAM, 64-

QAM and 256-QAM schemes [MAR98, p. 178, Table B.1]. These values have been

verified and corrected for minor sign errors and are presented in Tables VII-1 through

VII-8. Note that all moments and cumulant values are normalized by the theoretical

signal power P.
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2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM

2 d order Es,2,2
P 1 0 0 0 0 0

moments Es,2,1

Table VII- 1. Theoretical 2nd order moment values for 2-PSK, 4-PSK, 8-PSK, 16-QAM,
64-QAM and 256-QAM modulations.

2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM

4 th order Es,4,4

P 2  1 1 0 -0.68 -0.619 -0.604

moments Es,4,3

P 2  1 0 0 0 0 0

Es,4,2

p 2  1 1 1 1.32 1.38 1.395

Table VII-2. Theoretical 4 th order moment values for 2-PSK, 4-PSK, 8-PSK, 16-QAM,
64-QAM and 256-QAM modulations.

2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM

6 th order Es6,6

p 3  1 0 0 0 0 0

moments Es,6,5
P 3  1 1 0 -1.32 -1.298 -1.288

Es,6,4

p 3  1 0 0 0 0 0
p5 3

ES,6,3

p 3  1 1 1 1.96 2.22 2.29

Table VII-3. Theoretical 6t" order moment values for 2-PSK, 4-PSK, 8-PSK, 16-QAM,
64-QAM and 256-QAM modulations.
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2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM

8 'h order Es,8,8
P 4  1 1 1 2.2 1.91 1.82

moments Es,8,7
P 4  1 0 0 0 0 0

£s,8,6 1

p 4  1 0 -2.48 -2.75 -2.81

Es,8,5

P4  1 0 0 0 0 0

Es,8,4

P 4  1 1 1 3.12 3.96 4.19

Table VII-4. Theoretical 8"' order moment values for 2-PSK, 4-PSK, 8-PSK, 16-QAM,
64-QAM and 256-QAM modulations.

2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM

2 n order Cs,2,2

P1 0 0 0 0 0

cumulants Cs,2,1
p 1 1 1 1 1 1

Table VII-5. Theoretical 2 n order cumulant values for 2-PSK, 4-PSK, 8-PSK, 16-QAM,
64-QAM and 256-QAM modulations.

2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM

4 th order Cs,4,4

P 2  -2 -1 0 -0.68 -0.619 -0.604

cumulants Cs,4,3
P 2  -2 0 0 0 0 0

CS.4 ,2

P 2  -2 -1 -1 -0.68 -0.619 -0.604

Table VII-6 Theoretical 4t' order cumulant values for 2-PSK, 4-PSK, 8-PSK, 16-QAM,
64-QAM and 256-QAM modulations.
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2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM

yh order CS,6,6

P 3  16 0 0 0 0 0

Cs,6 ,5

cumulants P 3  16 -4 2.08 1.797 1.734

CS,6 ,4

P 3  16 0 0 0 0 0

Cs, 6 ,3

P 3  16 4 4 2.08 1.797 1.734

Table VII-7. Theoretical 6th order cumulant values for 2-PSK, 4-PSK, 8-PSK, 16-QAM,
64-QAM and 256-QAM modulations.

2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM

8t order Cs, 8,g

P 4  -244 -34 1 -13.98 -11.5 -10.97

cumulants CS,8,7

P 4  
-244 0 0 0 0 0

Cs.8,6
p 4  .244 0 0 -29.82 -27.078 -26.438

Cs,8,5

p 4  -244 0 0 0 0

CS,8,4

p 4  -244 -17 -17 17.379 24.11 25.704

Table VII-8. Theoretical 8tlh order cumulant values for 2-PSK, 4-PSK, 8-PSK, 6-QAM,
64-QAM and 256-QAM modulations.
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A. FEATURE EXTRACTION

A closer look to Tables VII-1 through VII-8 reveals that some of the moments and

cumulants can be used to separate different modulation schemes while others have little

or no use. For example, the 6th order moment E',6,5 can theoretically be used to

differentiate the 8-PSK scheme from all others.

Note that at this point it is essential to remember that Tables VII-1 to VII-8

present the theoretical values obtained for moment and cumulants, i.e., obtained

assuming the signal is clean and of infinite length. However, in practice signals are

usually subject to some type of distortion, either inside the transmitter or during

transmission, and are of finite length. In addition, channel distortion is likely to affect the

higher order statistics of the signal, although moments and cumulants are relatively

robust to signal distortion [Chapter V, Section B, Paragraphs 3.a and 3.b]. Moreover, no

infinite dataset is available in practical applications, and finite data length can

significantly affect estimate accuracy.

1. Signal Sequences Creation

Each signal used in this study was generated using MATLAB. We assumed that

carrier frequencies were estimated correctly and the signals heterodyned down. Thus, we

only considered complex baseband signals. The modulation types considered in this work

include 2-PSK, 4-PSK, 8-PSK, 16-QAM, 64-QAM, 64-QAM and 256-QAM, previously

considered by Marchand [MAR98], and 2-FSK, 4-FSK and 8-FSK. A total of 100,000
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samples per modulation scheme were created and stored. A typical bit rate of 1Mbps was

chosen for all simulations. The sampling frequency was chosen in such a way that all

schemes are sampled with 4 samples/symbol, a number currently used by manufacturers

of modulation and demodulation devices [COPOO]. The digital information (message) is

generated randomly for every trial, to ensure results are independent of the message

transmitted.

2. Moments and Cumulants Estimation

Estimating moment and cumulant values for all modulation schemes considered is

based on the theoretical formulas provided in Tables V-1 and V-2. For this process, only

the moments and cumulants that show some special characteristics as class features are

selected. The estimation is done on a subset of 20,000 samples per scheme, out of the

total 100,000 samples per scheme dataset. Two different cases are examined. First, the

signals are generated noise-free. Second, the signals are distorted by additive white

Gaussian noise (AWGN) to form a SNR equal to 0 dB. Estimated cumulants and

moments are presented in Table VII-9, where the values shown in parenthesis are those

corresponding to the 0 dB case.
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2.FSK 4-FSK 8-FSK 2-PSK 4-PSK S-PSK 16- 64-QAM 256-QAM

QAM

"Es.2 .2  (0.5 0.25 0.25 1 1 o 0 0 0

P (0.24) (0.12) (0.12) (0.5) (0) (0) (0) (0) (0)

Es.4.4 1 0.5 0.25 i 1 0 -(0.68 -(0.61 -0.6

p2 (0.23) (0.12) (0.06) (0.25) (((.25) (0) (-0.16) (-0.16) (-0.51)

Es.4.3 0i.5 0i.25 0i.25 1 0) ( .011 ().(X)2

P(o).5) (1,2 5) (0i.25) (1) () () ()() (o,(XX)4)

Es.4.2 1 1 1 i 1 i 13 1.38 1.34

(1.75) (1.75) (1.75) (1.75) (1.75) (1.75) (1.82) (1,85) (1.85)

Es,6.5  1 1i.5 0.25 1 1 0 -1.32 -1.29 -1.28

p 3 ( 01.7 5) (0).35) (0).18) ( 0}.75) (0I.72) 0 ( 40 6) (-(1.6) ( -0.54)

E s8. 1 i (.5 i 1 i 2.2 1.91 1.82

p 4 ( 0.25) ( 0i.5) (().181 ( 0I.13) ((0.18) (0.07) (0 0 ) (I11) ( 01)

E .. 1 0.5 ((.25 I I o -2.48 -2.75 -2.81

P
4  

(2.57) (1.18) (().7) (2.64) (2.61) ((1.i) (-2.37) (-2.5) (-2.25)

Es.8.4 1 I 1 i i i 3.12 3.96 4.19

P4 (12.82) (12.91) (13.13) (13.12) (13) (13) (15.5) (15.9) (16.18)

CS.4.4 -1. -01.5 -(0.5 -2 -I -0.68 -0.619 -0.6A)4

P (.) (.(.11) (-((.13) (-.(.5) (-(.25) (-(.25) (-0.17) (-((.15) (-((.15)

CS.6.5 1 -0.9 ((.25 16 -4 0 2.0(8 1.797 1.734
p 3 o) ( ) ( ) (2) (-().51 () ( 0I.25) (().2 1) ( 0i.22)

CS.8 31.6 2.45 2.45 -244 -34 1 -13.98 -11.5 -111.97

P4  
(2.22) ((0.52) (1 ) (-15.5) (-.184) (0) (0) (-((.86) (-(.8)

CS.8,4  -64.5 -28 -28.7 -244 -(8 -17 17.37 24.11 24.7

P4 (66) (65.62) (66.6) (13.02) (65.5) (65.73) (15.5) (76.02) (76.18)

Table VII-9. Estimated values for selected moments and cumulants up to the 8th order for
2-FSK, 4-FSK, 8-FSK, 2-PSK, 4-PSK, 8-PSK, 16-QAM, 64-QAM and 256-QAM

modulation schemes; total samples per scheme=20,000. SNR= oo, SNR =0 dB shown in
parentheses, P= noisy signal power.
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Table VII-9 shows that there are small differences between the theoretical and the

estimated values of moments and cumulants for the noise-free case, but in general the

values are quite close. However, this is no longer true for the 0 dB case. Such changes are

mainly due to the noise impact in the estimated noisy signal power, and to a :maller

extent to the noise effects in the moment and cumulant estimation process. For e. ample,

note that C.,.8 ,8 exhibits a large deviation from its noise-free value, making the selection

of the most appropriate feature even more difficult.

3. Feature Selection

Based on the results of Table VII-9, an initial selection of the features -, ith the

most interesting characteristics is made. These features are presented in Tabk VII- 10

below.

c_..__ Es.2.2  Es,4 3  Es.6.5 cs._.5

P 4  P P 2  p
3  P 3

Separates 2-PSK Separates M-QAM Separates M-QAM Separates 4-FSK Separates 4-PS1

from all other 4-PSK and 8-PSK 4-PSK and 8-PSK from 8-FSK and 8-PSK, fronr

schemes from M-FSK from M-FSK M-QAM

Separates 2-FSY

from 4-FSK and

8-FSK

Table VII- 10. Selection of the most discriminating features for the proposed scheme
classification.
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Further testing of the robustness of those features is essential to determine their

usefulness in a classification scheme and should include SNR level variations and

distortions due to fading and multipath.

a) Robustness to White Noise

We first investigated the robustness of features to additive white Gaussian

noise, i.e., the AWGN propagation model case as described earlier in Chapter fII, section

B, paragraph (a). We considered all modulation types in SNR levels between 0 and 20dB

with 100 trials per SNR level, and various data length for cumulant and moment

estimation. Complete results are presented in Appendix E. Figures VII-1 through VII-5

present the behavior for all selected features as a function of the SNR level for a 15,000

sample dataset.
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Figure VII- 1. Cs.,8 / p 4 for all modulation schemes; 15.000 samples dataset, 100 trials

per SNR level.
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Figure VTI-2. Es4.. 1P2 for all modulation schemes; 15,000 samples dataset. 100 trials

per SNR level.
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Figure VHI-3. ES.22 IP for all modulation schemes; 15,000 samples dataset, 100 trials per

S NIR level.
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Figure VII-4. C..... / P- for allI modulation schemes; 1 5,000 samples dataset, 100 trials

per SNR level.
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4-FSIC

2W~ 10d2 cc,~

Figure VII-5. Es.6., / P~for all modulation schemes; 15.000 samples dataset, 100 trials per

SNR level.

Figures VJI-1 through VII-5 show that the selected features may be used to

separate all schemes, except M-QAM, down to almost 5dB. However the AWGN
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channel is a simplified case that does not take into account fading and multipath

propagation phenomena.

b) Robustness to Fading and Multi-path Environments

Robustness of the selected features was investigated next by studying their

behavior when the modulation signal is passed through the various fading and multipath

propagation models covered in Chapter III. Sect. B.1-4. The specific impulse responses

for each propagation channel used in this study are presented in Appendix C (Channels 1

to 9). These channels cover a variety of different environments, from rural environment

models with 1 or 2 paths to urban models with more than 3 different propagation paths.

SNR levels between 0 to 20dB were again considered here, and 100 trials implemented

per SNR. Complete results are presented in Appendix E. Figures VH-6 through VII-10

present the behavior for all selected features as a function of the SNR level for a 15,000

sample dataset.
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Figure VII-6. CS.S I P4 for all modulation schemes; 15,000 samples dataset, 100 trials

per SNR level.
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Figure VII-7. Es43 1P- for all modulation schemes; 15,000 samples dataset. 100 trials

per SNR level.

79



1.2

r

2-FKBI 1 
,-

2-FSK

S-S Nj

4-?SK ~0

256-QýM f-

16-QIW-2__ _ _ _

Figure VII-8. ES.22/ P for all modulation schemes; 15,000 samples dataset, 100 trials per

SNR level.
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Figure VII-9. GS,6,5z I' for a]lI modulation schemes; 15,000 samples dataset, 100 trials

per SNR level.
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Figure VI-l10. Esý65 P` for all modulation schemes; 15,000 samples dataset, 100 trials

per SNR level.

Figures VII-6 through VIl-10 reveal the impact of the modeled wireless

propagation channel on the higher-order statistics of the modulation types. Some

propagation channels (Channels 3 and 7) distort the selected features to such an extent
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that any attempt to built a classification scheme based on fixed class feature thresholds is

doomed to fail.

B. PROPOSED SCHEME

Figures VII-lI through Vil-10 show that the proposed classification scheme has to

be flexible to SNR level and propagation channel distortions. With the exception of the

M-QAM modulations, higher-order statistics may have the power to separate different

modulations provided one introduces some type of "agile" classification scheme. At this

point, neural networks seemed a logical approach to the problem because they offer

flexibility and performance proportional to the quality of the training data set available.

In addition, neural networks can be a very fast, near real-time, solution to the problem,

once they are trained. However, note that the classification of M-QAM type is still a

problem since no suitable higher-order statistics can be found to serve as classification

features, for the varying environments considered. In this case, a combination of

equalization techniques, previously considered by Barbarossa et. al. [BAROO], will be

applied to identify the specific M-QAM type. The proposed method cascades the FSE-

CMA equalization and the AMA method, previously described in Chapter IV. The

complete classification scheme is shown in Figure VII- 11.
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Unknown signals~n •2-PSK

I B1ock#0

Block " c's - 0.................. "E... O 1

4-PSK SS6, -PSK CS•52-FSK
44,3

4- BSK C# S , 5 E-SK5  2 FS

AMA 4-FSK S-FSK
I.I

16-QAM 256-QAM

64-QAM

Figure VII-1 1. Theoretical classification scheme for 2-FSK, 4-FSK, 8-FSK, 2-PSK,
4-PSK, 8-PSK, 16-QAM, 64-QAM & 256-QAM modulation types.

The overall classification scheme consists of five high-order statistics-based

classification blocks that are described next, and one equalization-based block. The first

five blocks contain basic back-propagation neural network classifiers trained to identify
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all constant modulus signal types: 2-FSK, 4-FSK, 8-FSK, 2-PSK, 4-PSK, 8-PSK, and

generic M-QAM types. The specific identification of the QAM type (1 6-QAM, 64-QAM,

256-QAM) is accomplished via a combination of FSE-CMA and AMA equalization

methods. Note that the use of the FSE-CMA is essential for the proper initialization of the

AMA algorithm [BSC98].

1. Neural Network Blocks Implementation

Conceptually, the proposed classification scheme includes two different

approaches. The neural network classifiers and the blind equalization classifier.

Blocks number 0 to 4 in Figure VII-1 1 are single, two, three or four layer neural

networks. Each network is trained with a specific feature training sequence, with the

exception of the second block that is trained with two features simultaneously. The

number of layers, the activation functions and the number of epochs vary from block to

block. The choice for the specific characteristics of each network was done empirically

by trial and error and based on the clarity of the specific feature. Note that more layers

and more epochs were selected for features more severely distorted from noise or

propagation channel effects than others. Table VII- 11 presents the characteristics for each

neural network.
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BLOCKS

#0 #1 #2 #3 #4

Inputs 1 2 1 1 1

Classifying Cs,8, 8  Es,4,3 Es.2,2  Cs,6.5  Es, ,5  Cs,6,5

P 4  p2 ' p P 3  P 3  P 3

Feature(s)

Layers 2 3 3 4 3

Arrangement of

neurons per 8-1 20-8-1 20-10-1 14-4-2-1 20-10-1

layer

Activation 'tansig' 'tansig' tansg' 'tansig' 'tansig'

function per 'satlins' 'tansig' 'tansig' 'tansig' 'tansig'

layer 'purelin 'satlins' 'tansig' 'satlins'

'purelin'

Required epochs 40 40 70 100 40

Table VII- 11. Neural network characteristics for blocks #0 through #4.

Training data was generated according to the schematic shown in Figure VII-12.

First, a 15,000 sample sequence was extracted out of the 100,000 samples generated for

each modulation type, as described in Chapter VII, Sect. A. 1. Next, each sequence was

passed through one out of nine different propagation channels further described in

Appendix C (channels 1 to 9). These channels were selected to represent a wide variety
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of propagation situations. They include from single to more than 4-path models that

correspond to rural, small town or urban propagation conditions. Next, the resulting

signal sequences were corrupted with additive white Gaussian noise with SNR levels

between 0 to 20dB. Finally, 100 trials per SNR level were generated. Note that we used

multiple trials per SNR level to get a sense of the variance in the measurements and

enhance the network's performance.

Next, the selected features defined above were estimated for each noisy signal. As

a result, each dataset was associated with six different feature parameters and each

feature (or combination of) fed into the appropriate network for training. Figure VII-12

shows the training dataset creation process.

'Messa•g]

2.FSK 4-FSK 256-QAM:

F#11 #9 9 PropagoJdon chanmeis

ýA 120 SA &vefr

Sequentially stored data

Figure VI- 12. Training schematic for the neural network based classification blocks of
the overall classification scheme.
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2. FSE-CMA & AMA Classifier Block Set Implementation

The purpose of the last block (Block #5) is to differentiate within the QAM

family, where 16-QAM, 64-QAM and 256-QAM signal types are considered here. These

modulation types are those most susceptible to noise and fading due to the proximity of

the associated constellation's centroids, especially for higher order constellations. Recall

that Table VII-11 showed how similar the higher-order parameters are for QAM

schemes, thereby making them of little use in classification applications.

Block #5 consists of two parts. The incoming M-QAM signal is first equalized

using the FSE-CMA algorithm, as described in Chapter IV, Sect. A. This method is

proved to be efficient when the equalized constellation is unknown. A 20-tap equalizer is

chosen and the step size selected to be equal to 0.5 to insure the algorithm is stable.

The second process in Block #5 is the AMA algorithm described in Chapter IV,

Sect. B. Following the model of Figure IV-9, three different equalizers banks are created,

eaih one matched to one of the three QAM constellations. The parallel model is adopted

as it speeds up the decision process, although a model with three AMA equalizers in

series would also work. The processed signal obtained after the FSE-CMA step is

processed so that all the signal's values lie between -1 and 1 and then passed through the

three AMA equalizer banks. Each AMA equalizer is matched to a specific QAM type:

16-QAM, 64-QAM, or 256-QAM. The cost function J(n) given in Equation 4.7 is

evaluated after converge for each AMA equalizer. Recall that the theoretical cost

function will be smallest when assigned to the correct constellation type, as described in

Chapter IV, Sect. B 1. As a result, the constellation type decision is made by picking the
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modulation type associated with the smallest estimated cost function out of the three

modulation types computed.

C. TESTING PROCESS

1. Non Linear Case

The proposed classification scheme is ready for testing once all neural networks

are trained. The MATLAB-based software allows the user to run a single test simulation,

by manually selecting the signal type, SNR level and propagation channel type. It also

allows to automate the entire process by considering all modulation types, seven SNR

levels ranging between 2dB and 20dB, 50 independent trials for each case and 3 out of

the 6 available testing propagation channels. A complete copy of the software may be

found in [HAT0O] or is available by contacting the authors. For every trial, a new random

message and noise is created to ensure the independence of all results. The three

propagation channels that are chosen for testing are channels 10, 12 and 14 (Figures C-

10, C-12 and C-14). These channels represent rural, small town, and urban propagation

environments respectively.

The automated process creates seven confusion matrices per propagation channel

(one per SNR level), which are presented in Appendix F. These simulations cover a wide

spectrum of possible noise and propagation environment combinations. The main

quantities of interest were the overall classifier performance and the performance of the

neural-network (NN)-only portion of the classification set-up, which only considers the
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generic QAM family but does not subdivide into the three QAM schemes considered

here. Figures VII-13 to VII-15 show these two quantities for the classification set-up

obtained for a rural area propagation model (which is presented in Figure C-10), a small

town propagation model (which is presented in Figure C-12) and an urban propagation

model (which is presented in Figure C-15). Results show the NN-only portion of the

classifier to perform very well down to lldB for all cases. At the same time, the

degradation in classification also shows that Block #5 (designed to separate between the

various M-QAM schemes) has a consistently lower performance than the rest of the

classifier. This degradation reveals the difficulties of M-QAM separation, especially at

low SNR levels. This degradation is also illustrated in Figure VII-16, which presents the

classification performances for specific M-QAM types. Such degradation is due to the

fact that the equalization algorithms cannot completely undo non-linear channel effects

and mitigate the noise effects.

Results also show that classification performances degrade as the complexity of

the environment increases for a given SNR level. However, the classifier stills performs

relatively well in the most complicated environment, i.e., the urban channel model

(Figure C-15). This was to be expected as the training of all neural network blocks

included urban propagation channels (Figures C-3, C-4 and C-7).

Figure VII-17 illustrates the classification performance for Block #4 (based on

cumulant C6,5) in correctly identifying a given modulation as being of M-QAM or non-

M-QAM type for all three testing channels. Results show that Block #4 performs well,

and further confirms that the degradation in classification performances actually occurs at

Block #5 containing the equalization steps. As a result, next we considered a linear
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channel case to investigate the sensitivity of the equalization steps to a "better behaved"

transmission scenario.
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Figure VII-13. Classification performances for channel 10 (Figure C-10); 50 trials per
signal per SNR level.
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Figure VII-14. Classification performances for channel 12 (Figure C-12); 50 trials per
signal per SNR level.

91



1I0

100

90

-------------------------------
80 -"

Sso
60

4. 0

40 - TOTAL CLAS SIER PERFORMANCE

30 NEURAL NETWORKS PERFORMANCE

20 1 1

2 4 6 8 10 12 14 16 18 20

s NR raBi

Figure VI- 15. Classification performances for channel 15 (Figure C- 15); 50 trials per
signal per SNR level.
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Figure VII- 16. M-QAM-specific classification performance for channel 10, 12 & 15; 50
trials per signal per SNR level.
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MQAM/non-MQAM differentiation
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Figure VII-17. M-QAMfnon M-QAM differentiation performance for channel 10,12 &
15; 50 trials per SNR level.

2. Linear Case

To investigate the robustness of Block #5 to channel distortions, we consider a

simple linear channel with impulse response h=[0.9,0.1,0.4] to train the previous network

in SNR levels between 2 and 20dB. Next, the network is tested for data transmitted

through another linear channel with impulse response c=[1,0,0.5]. As before, 100 trials

per SNR level are selected for training, while 50 trials are generated for testing, resulting

in seven confusion matrixes (one for each SNR level). Average classification

performances are shown in Figure VII- 18 and the confusion matrixes included in

Appendix F.

93



110

100

90

80

70

s o

40

- TOTAL CLAS S IFIER PERFORMANCE
30 ---- NEURAL NETWORKS PERFORMANCE

2 4 6 8 10 12 14 16 18 20

S NR [dB I

Figure VII-18. Classification performances for network trained on linear channel
c=[1,0,0.5]; 50 trials per signal per SNR level.

Figure VII-18 illustrates the fact that the equalization-based classification portion

performs better in medium to high SNR levels when channel distortions are linear, as

expected.
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VIII. CONCLUSIONS

Classifying modulation types has been studied extensively over the last decade as

applications arise in numerous different areas. However, few published works deal with

real-world propagation models. This study considered the classification of various M-

PSK, M-FSK, and M-QAM modulation types under unfavorable propagation conditions

and additive white Gaussian noise distortions. We first reviewed the literature in the

general area of modulation classification. Initial work indicated that higher-order statistic

parameters could be selected to differentiate between all digital modulation types

considered in this study when dealing with ideal transmission conditions. However,

initial work also showed that these class features were no longer useful in differentiating

between specific QAM types, when signals were distorted by multipath environments.

As a result, a hierarchical classification scheme based on neural network decision

nodes was adopted to separate all modulation types, except specific M-QAM types.

Classification of various M-QAM types was obtained by a combination of two

equalization schemes: the CMA-FSE and the AMA algorithms. While the CMA-FSE is a

blind equalization scheme, the AMA takes advantage of the specific M-QAM

constellation structure of the QAM types considered. Such a two-step process was

motivated by the high sensitivity of QAM modulation types to channel distortions, and

the inability of higher-order statistics to separate within the M-QAM family for medium

and low SNR levels.
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We investigated classification performances for the overall classification scheme

in various types of propagation channels (rural, small town and urban) and SNR levels.

Results show the classifier performs well for all modulation types considered, but breaks

down fast as the SNR level goes down for M-QAM modulation types. This degradation is

due to the unability of the current equalization set-up to handle both multipath and SNR

degradations. However, such a result was expected as M-QAM modulation types,

especially those of high order, are extremely sensitive to noise and multipath fading

situations. At this point, further refinements in the equalization schemes would be

required to improve the M-QAM classification portion of the hierarchical scheme.

Note that classification performances are directly related to how well the network

gets trained, and that better training may be obtained by including a wider range of

propagation models and SNR ranges. In addition, note that that the overall classification

process considered in this work does not take into account any a-priori knowledge of the

propagation environment. However, some type of propagation channel information, such

as the general type of channel (i.e., rural or urban areas), may be available in some

situations. Incorporating a-priori information will lead to a "better" training of the neural

network with data selected for the specific environment of interest, resulting in improved

performances.

Finally, this study did not take into account pulse shaping which is commonly

used prior to transmission in practical situations. Adding pulse shaping and investigating

the resulting effects on overall classification performances is needed to assess the overall

capability of the proposed hierarchical scheme. However, the current project timeframe

did not allow for such extensions to be considered, and those are left for further study.
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APPENDIX A. AMA COST FUNCTION GRADIENT DERIVATION

Recall from Chapter IV that the output to the AMA equalizer is given by:

L-1

z(n) = X h, (n). s(n-l), (A.1)

1=0

where h is the L-tap FIR equalizer weight vector at sample n, given by:

h=[h0 ,..., hLl]' (A.2)

and s is a portion of the input signal with length equal to the length of the filter

equalizer:

s = [s(n), s(n - 1),... s(n - L)]. (A.3)

Therefore, Equation (A. 1) for the nth sample may be re-written in vector form as

follows:

z =hT s. (A.4)

Recall the AMA cost function for the nth sample is given by (Chapter IV, equation

4.7):

k +{1-X (i )12/G2 (A.5)

where M represents the total number of centroids for the kth constellation, ck (i) is

the ith centroid of the k constellation, and a is a constant chosen so that:

e (1)-c(i)j'/2o =9 0, 7(A.6)
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The gradient of the cost function given in Eq. A.5 is:

M Hz-c,,(0jJ [H-IZC, (1)12a Ye /o24 a e /2,r
aE{-X I az DG1) az M L az

ah A z A j=1 aI2

f(Ž-c-y e i) =>jT2~ [s- (A.7)

VJk = hl,- (.)V22 [LhT  Ck (j)]* ST}

98



APPENDIX B. DERIVATION OF MOMENT EXPRESSIONS FOR UP TO 8"R
ORDER

Recall that the auto-moment for a sequence Sk was defined earlier in Chapter V

as:

Esp+q,p " E sP (s*)y (13.1)

where p and q respectively represent the number of the non conjugated and conjugated

.terms, respectively, and p+q is the moment order.

Consider a zero-mean sequence of the form Sk = ak + j-bk. For M-QAM signal

types, ak and bk are independent, and as a result, the auto-moments are purely real

[MAR98, p. 169, equation B. 13]. For M-FSK and M-PSK types this result does not hold,

as real and imaginary sequences ak and bk are not independent. However, Marchand

showed that for constant modulus signals such as M-FSK and M-PSK types, all moments

are either zero (for odd order moments) or non-zero real quantities [MAR98, p. 175, Eq.

B.51-B.53]. Therefore, expressions for the auto-moments of modulations M-QAM, M-

FSK and M-PSK can be derived easily, by applying equation (B. ) to Sk for various orders

p and q and keeping the real part only. Results are shown next.

B.1 SECOND ORDER MOMENTS

SEs,2 2 = E[s2(s*)O] = E[(a + jb)21

Es,2,2 = E[(a2 - b2 )]
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*E 5 2 ,1 = E[s'(s*)1 ] =E[(a + jb)(a - jb)] =>

E5 2 ,1 = EII(a 2 + b 2)

B.2 FOURTH ORDER MOMENTS

0 s44= Els'(s* )O] = LTa+jb)4 ] = E[(a+ jb)2 (a+ jb)2 ] =

F, 4,4 = L~ý+ 4a'bj + 4ab~j + 6a 2 b 2j2 +jb 4] =E[a4 + b 4 _-6a 2 b2]

0 S 4 ,3 = E[s 3s*] = E[(a + jb)3 (a - jb)] =*

E, 4 ,3 = E[(a' + 3a 2bj + 3ab 2 j + b' j 3 )(a - jb)] =>

E, 4 ,3 = E[a 4 + 2a 3 b - 3ab 3 j - ab3 -b b4 ] = E[a 4 - b 4 ]

0 S4 ,2 = E [S2 (S*)2 ] = E[(a + jb ) 2 (a - lb )2 jI

F, 4 ,2 = E[(a2 - b2+ 2abj)(a 2 + b 2 - 2abj)] '

ES42= Ela 4 + b 4 - 2a 2 b 2 j 2 ] = Ela 4 + b 4 + 2a 2 b 2 ]

B.3 SIXTH ORDER MOMENTS

*E, 6 ,6 =E[S6 (s*)O] =E[(a+ jb)6 ] =E[(a+ jb)3 (a+jb)3 ] :>

s,6,6 = E[(a I + 3a2 bj +3ab2 j 2 +b'j3 )(a3 +3a2bj +3ab2j 2 + ~j~)] =

E 5 6 ,6 = E[(a 3 + 3a2bj _ 3a2 - b 3 j)(a' + 3a2bj_- b2_-b 3j)] >

E, 6,6 =E[a6 + 6a~bj - 6a4b2 - 20a'b-j + 9a 4b2j2 _ 6a2 b4 j2 +9a2b4 +6wb I +b 6j 2]

Es66= E[a6 -1,6 +15a2b4 -15a 4b2]

£,6,5 = E[s's] EII(a + jb)5 (a - ib)] =>

£5,6,5 = E[(a5 + 5a 4bj +10a 3b 2j' + 10a 2b 3j3 + 5ab 4 j4 + b'j 5 )(a - bj)]

E5 6,5 = Ela 6 + 4a'bj +5a 4b 2j2 -5a 2 b 4j4 - 4ab 5 j - b6j6] =-.,

ES65= E~a 6 -5a 4b2 -5a 2b 4 +b6]
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* F, 6 ,4 = E[s 4 (s )2] = E[(a + jb)4 (a - jb)2]

E,6,4 = E[a 4 + 4a'bj + 6a 2b 2 j2 +4ab3 1'+b b4 j 4 )(a 2 - 2abj - b 2 )] =>

E.6,4 = E[a 6 +±2a' b- a 4 b 2 j2 - 4a'b3 j - a 2 b 4 j4 + 2ab5  + +b 6 j6] =>

F, 6,4 = E[a 6 + a 4b 2 - a 2 b 4 - b6]

F, 6 ,3 = E[S3 (S*) 3] = E[(a + jb)3 (a - jb)3 ]

E, 6 ,3 = E[a 3 + 3a 2bj + 3ab 2 j2 + b'j 3 )(a 3 - 3a 2bj + 3ab 2 j 2 - P j 3 )]

F, 6 ,3 = E[a 6 - 3a 4 b 2 j 2 + 3a 2b 4 j4 - b 6 j 6]

Es,6 3 = Ela 6 +±3a 4 b2 +3a 2b4 + b6 ]

B.4 EIGHTH ORDER MOMENTS

E58,8 =E[jS8 (s*)0] =E[(a + lb)8 I >

Es.88 = E[a8 + 8a 7 b+28a6 1,2 2 +56a5 13 j3 +7Qca14b j4 ±56a3b5]5 +28a2 b6j 6 +Sab7 7 bljl]]

E5 8,8 = E~a 8 - 28a~b2 +70a 4b4 -28a 2b6 +bY]
Es,,7 = E[S7 S ]-=EI(a +jb)7 (a - jb)] ='

Es,7= E[a 7 +7a 6bj+21a'b 2j 2 +35a 4 b 3j3 + 35a'b 4 j4 + 21a'b~j5 +7ab~j6 +b 7j7 )(a -jb)]

E, 8,7 =E[a8 +6a7b b+14a~b2 j2 +14a5 b3j I' 14alblj5 _-14a 2 b 6j6 _-6a 7  -b~18j8] =>

E, 8,7 = E[a' - 14a'b2 +14a 2 b6 -1,8]

Fl,86 = E[s' (s*)'I= E[(a +jb)6l(a-_jb) 2]=

Es16= EII(a 6 + 6a5 bj +15a 4 b 22 + 20a b3 j3 + 15a 2b 4j4 +6ab I j5 + b6 j6 )(a 2 - 2abj +b2 j2)]

E, 8,6 = Ejla8 + 4a7bj + 4a6 b 2j2 -4a5 b3 j3 - 10a 4b 4j4 _ 4alb5 j5 + 4a2 bY j6 + 4ab~j7 + 18j] 'l

Es,,6 = Ella8 - 4a 6b 2 - 10a 4b 4 _ 4a2b6 + b8]

ES", = EIls5(S*)3] E[(a + j1,) (a-_jb) 3 ] =>

E~~8, + =Ia+5a4bj +1I0a 3b2j2 +1I0a 2 bj3 I'+o 4j4 + 5 j ( 3 -3~j+3ab2 j2

ES8,,, =.E[al + 2a'bj-_2a 6b2j2 -6a 5 1,3 3 +6ab'b5 j5 + 2a2 b8 6 6 - 2ab 7f -1,8j8)]==,

E"5= E[a8 + 2a6 b2 
-2a

2b6 _1,8]

101



Esg,= E[ S4(S*)4 ] = E[(a + jb)4 (a - jb ) 4] =>

Es,84 = [a + 4a'bj + 6a 2 b2 2 + 4ab3 j3 + b 4 j 4 )(a 4 - 4a'bj + 6a'b 2 j2 - 4ab3 j3 + b 4 j 4 )] =>

E. 8 .4 =E[a' - 4a 6 b' j2 + 6a 4 b 4 j 4 - 4a'b' j 6 + bxj8 ] l

ES84= E[a 8 +4a 6b2 +6a 4b 4 +4a 2b 6 +b 8]
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APPENDIX C. PROPAGATION CHANNELS IMPULSE RESPONSES

One of the goals of the study was to simulate situations as close to reality as

possible. For this reason, data taken from real world measurements were used, as opposed

to artificial channel models [SPIBOO]. These impulse responses represent various

wireless propagation channels, from mild fading to severe multipath fading situations.

Figures C-i to C-9 show the impulse responses of the channels used for the neural

network training described in Chapter VII. Figures C- 10 to C-i15 show the impulse

responses of the channels that are used during the testing phase of the overall

classification scheme. All plots present the magnitude of the complex impulse responses

in dB. One thing that worth noting is the similarity of some of these real world channels

with the theoretical Rayleigh fading envelope presented in Figure 1U[-4. However, note

that there are cases where the real channels are much worse than those described by the

Rayleigh fading model (Figures C-14 and C-15).
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Figure C-1. Propagation channel #1.
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Figure C-2. Propagation channel #2.
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Figure C-3. Propagation channel #3.
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Figure C-4. Propagation channel #4.
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Figure C-5. Propagation channel #5.
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Figure C-6. Propagation channel #6.
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Figure C-7. Propagation channel #7.
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Figure C-8. Propagation channel #8.

107



- 00

-20

-40

S-60

z
o 4

-00

-100

-120
0 S0 100 150 200 250 300

SAMPLES

Figure C-9. Propagation channel #9.
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Figure C-10. Propagation channel #10.
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Figure C-11. Propagation channel #11.
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Figure C-12. Propagation channel #12.
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Figure C-13. Propagation channel #13.
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Figure C-14. Propagation channel #14.
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Figure C-15. Propagation channel #15.
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APPENDIX D. MATLAB CODE

function [ynew,flagout]=fsecma(r,stp);

% Function
% - Implements the FSE-CMA blind equalization algorithm

% Use: [ynew,flagout]=fsecma(r,stp)

% Input: r-> The signal that is to be equalized
% stp-> The desired algorithm step

% Returns: ynew-> The equalized signal
% flagout-> A diagnostic flag variable

% Function fsecma.m created by the MPRG group [MPROO]
% Modified on 21 January 2001 by G. Hatzichristos

% Run CMA on T/2-spaced modem data
% with a T/2-spaced equalizer (FSE)
flagout=l;

% Get number of T-spaced symbols
L=(length(r)/2);
% Normalize to unit power
r=r-mean(r);
r=r/((1 /length(r))*norm(r,2)A2);
% Define FSE
Nf=1 6; % This is the number of coefficients in use
f=zeros(Nf,L);
% Center spike init
f(Nf/2,Nf/2-1)=1;
% Define step-size & dispersion constant
% any number for g will work to open eye
% or rings
mu=stp;
qaml=abs(r).A4;qam2=abs(r).A2;g=qaml/qam2;
% Define error and equalizer output
e=zeros(1 ,L);
y=zeros(1 ,L);
% Run CMA
for k=Nf:2:2*L,
j=k/2;
R=r(k:-l:k-Nf+l).';
yoj)=R.'*f(:,j-1);

if norm(y(j))>10000
flagout=-1

return
end
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f(: ,j)=f (: ,j-1 )+mu*conj (R)*yaj)*(g-abs(yOj))A2);
end
0/0 Run new data to get eye diagram
% make sure to get odd samples
ynew=fiIter(f(:,j),1 ,r);
ynew=ynew(2:2:ilength (ynew));
ynew=ynew(l 00:Iength(ynew)-l 00);
ynew=ynew';
flagout=1;
return

% END OF FUNCTION

function [flag~storage]=ama -function(x...signal);

% Function
% - Implements the Alphabet Matched Algorithm classifier

% Use: [flag.-storage]=ama-.unction(x-signal)

% Input: signal-> The unknown M-QAM sequence

% Returns: flagstorage-> A flag variable indicating the identified modulation

% 21 January 2001, G. Hatzichristos

f lagout=0;
xmnaxj1 6qam=0;xmax-64qam=0;xmaxý256qam=0;
ymnaxj -6qam=0;ymacý-64qam=0;ymax-256qam=0;
centroid-matrix-1 6qamn=f;centroid mnatrix_64qam=0;
centroid-matrix-256qam=fl;
xvectorjl 6qam=U;xvector_64qam=fl;xvector-256qam~Fj;
yvectorjl 6qam~fl;yvector-64qam=fl;yvector.256qam=fl;
0/% Do the FSE-CMA
[x..signall ,f lagout]=fsecmaoýxsignal,0.5) ;flagout
[x...signal2,flagout]=fsecmaox...signai,5) ;fiagout
if flagout==-1

disp('we have 16qam')
xýsigna12=x~signall;

end
[x..signal3,flagout]=fsecma(x..signal, 1 5);flagout
if flagout==-1

disp('we have l6qam')
xý_signa13=x~signaI2;

end
% Do the preprocessing
% Here the signal is processed so that its limits are from -i to 1
[pn,mninp,maxp,tn,mint,mnaxt] =premnmx(real(xý-signaill),imag(x..signall ));
x...signall =pn+i*tn;
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[pn, minp, maxp,tn, mint,fllaxtI =premnmx(real(x-signal2),imago(Xsigflal 2));
x(_signal2=pn+i*tn;
[pn,minp,maxp,tn,mliflt,mlaxt] =premnmx(real(x-signal3),imag(X..sigflal 3));
x(-signal3=pn+i*tn;
[snr-estl ,qam-energy-estimate]=snrLestim (x~signall);
[snr -est2,qam-energyestimate]=snrl-estimo(Xsigfal2);
[snr-est3,qam-energy-estimate]=snfl-estim(X-sigfal 3);
snr -est=mean([snrestl snrý_est snrý_est3]);

"% The position of the noisy sig nal's centroids is affected from the signal to noise ratio
"% Therefore an estimate of the SNR helps to fine-tune the theoretical centroids as close
"% to the real centroids as possible.

if snrý_est<=8
xmaxý__ 6qam=O.5;
xmax_64qam=O.4;
xmaxý256qam=O.6;

elseif snrý_est>8 & snr-est<=1 1
xmax..j 6qam=O.58;
xmax-64qam=Q.48;
xmax...256qam=O.7;

elseif snrest>l 1 & snrý_est<=1 4
xmaxj_ 6qam=O.6;
xmaxý64qam=O.6;
xmaxi.256qam=O.7;
elseif snrý_est> 4 & snrý_est<=1 8
xmax-j 6qam=O.8;
xmax(_64qam=Q.7;

xmax.256qam=O.7;
else if snrý_est>1 8

xmaxj1 6qam=O.8;
xmax-64qam=Q.7;
xmax.256qam=O.7;

end
ymax-1 6qam=xmax_1 6qam;
ymax-64qam=xmax-64qam;
ymax-256qam=xmax 256qam;
% Create the theoretical centroids of all three M-QAM modulations
xvector-1 6qam=~-xmaxA1 6qam:2*xmax_1 6qam/3:xmax_1 6qam;
yvector91 6qam=-ymaxý._1 6qam:2*ymaxjl 6qam/3:ymax-1 6qam;
xvco-4a=xm)_4a:*m ý6qm7xaý64qam;
yvco-4a=yaý6qm2*mxý4a/:mx6qm
xvector_256qam=-xmax(.256qam:2*xmax_256 qamll 5:xmax_256qam;
yvector - 5qm-mx26am2yaý26a/ 5:ymax-256qam;
for loopi =1:4
for loop2=l :4

centroid-matrixLl 6qam=[centroid~matrixj_ 6qam;xvector.J 6qam(Ioopl)
yvectorj -6qam(Ioop2)];

end
end
for loopi =1 :8

for loop2=1 :8
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centroid-m atrixý_64qam=[centroid-matrixý_64qam;xvector_64qam (loopl1)
yvector-64qam(loop2)];

end
end
for loopl =1: 16

for Ioop2=1 :1 6
centroid-matrix-256qam=[centro id-matrixý_256qam;xvector 256qam (loopl1)
yvector-256qam(Ioop2)];

end
end
centroid-vectori 6qam=centroid-matrix-1 6qam(:,l1)+i.*centroid-matrix_1 6qam(:,2);
centroid-vector-64qam=centroid-matrix_-64qam(:,l1)+i.*centroid matrix_64qam(:,2);
centroid-vector-256qam=centroid-matrix_-256qam(:,l1)+i.*centroid matrix_256qam(:,2);

% At this point, we have the theoretical centroids and our signal (already passed from fsecma
% and corrupted with noise)

% INI T IAL IZ E
% initialize h
samples=len gtho(xsig nail);
taps=20;
g=0.1;
% First filter bank variables declarations
si =f;CF1=[];
term 1 _ =fl;term2..j =fl;

TERM2_1 =f;finall =fl;costj =cP COST_1 =1I;COST function_1 =O-TERM3_1 =fI;hal =EI;
hi =zeros (40000,taps);cl =fl;
hi (:,taps/2)=1;
cl =centroid-vector-1i6qam;
M1 =16;
sigmal =O.5*(O.2406);
% Second filter bank variables declaration
s2=!I;CF2=U;
term 1 2=fl;term2 2-ri;
TERM2_2=fl;final 2=fl;cosL2=O;COST _2=fl;COST function_2=O:TERM3_2=I1;ha-2=U;
h2=zeros(4OOOO,taps);c2=0;
h2(:,taps/2)=1;
c2=centroid-vector_64qam;
M2=64;
sigma2=O.5*(OAl 174);
% Third filter bank variables declaration
s3=II;CF3=U;
term 1 -3=H;term2_3=U;
TERM2_3=fl;final_3=fl;costL3=O;COST 3=fl;COST function_3=O;TERM3_3=fl;ha-3=fl;
h3=zeros(40000,taps);c3= 4;
h3(:,taps/2)=1;
c3=centroid-vector_256qam;
M3=256;
sigma3=Q.5*(0.0584)
flag=2;

%*** BEG IN AMA
for k=taps:taps:samples-taps-1 0;
xl =flipud(x-signall (k:k+taps-1 ,1 ));
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x2=f lipudox...signal2(k*k-itaps-11, 1));
x3=f lipud0x-signal3(k:k+taps-1 , 1));
flag=flag+1;

%AMA for first filter bank
for count=i :M1;
termi ...1=111 (flag,:)*xi -ci (count);
term2 -j =(exp((-abs(term 1-1 )A2)/(2*sig mall A2)) *((conj (term 1. -))/(s igmai A2))*xi l
TERM2i- =[TERM29 ;(term2-1)];
costj =(exp(-(abs(terml1.9)A2)/(2*(sigmal A2))));
COST -1 =[COST.9 ;costj];
end,
COST_1
TERM3.9 =(1/taps)*sum(TERM2 - );
COST_function- =(1 /taps)*(1 -(sum(COSTJ1)));
CF1=[CF1 ;COST-function-1];
mil=g*(norm(hl (f lag-i ,:)*x1 )/(norm (TE RM3J )));%/((no rm (x))A2));%
hi (flag,:)=hl (flag-i ,:)-mil *(TERM3_1);
all=hl (flag,:)*f lipud(xl);
si =[si 1;mill ];TER M3-1 =G;TERM2_1 =jJ;terml1j_ =fl;term2_1 =fl;COST-1 =fl;
final_1 =[final_1;al I;

% AMA for second -filter bank

for count=1 :M2;
terml 1 2=h2(f lag, :)*x2-c2(count);
term2 -2=(exp((-abs(termi 1 2)A2)/(2*sigma2A2))*((coni (term 1 -2))/(sig ma2A2))*x2)l;
TERM2 -2=[TERM2 -2; (term2 -2)1;
cost -2=exp(-(abs(terml-2)A2)/(2*(sigma2A2)));
COST -2=[COST_2;cost 2];
end
TERM3 -2=(1 /taps)*sum(TERM2-2);
COST -function -2=(1/taps)*(1 -(sum(COST 2)));
CF2=[CF2;COST-function 2];
mi2=g*(norm (h2(f lag-i ,:)*x2)/(norm(TERM3-2)));
h2(flag,:)=h2(f lag-i ,:)-mi2*(TERM3-2);
a2=h2(flag,:)*flipud(x2);
s2=[s2;mi2];TERM3-2=fl;TERM2-2=fl;terml_2=fl;term2-2=fl;COST-2=fl;
final_2=[final_2;a21;
% AMA for third filter bank
for count=1 :M3;
term 1 .3=h3(flag, :)*x3-c3(count);
term2....3=(exp((-abs(termn 1 ...3)A2)/(2*si gma3A2)) *((conj (term 1 93))/(sigma3A2))*x3)';
TERM2 -3=[TERM2 -3;(term2 -3)];
cost -3=exp(-(abs (term 1 3)A2)/(2*(sig ma3A2)));
COST -3=[COST 3;cost 3];
end
TERM3-3=(i /taps)*sum(TERM2 -3);
COST -function -3=(1 /taps)*(i -(sum(COST...3)));
CF3=[CF3;COST-function -3];
mi3=g*(norm (h3(f lag-i ,:)*x3)/(norm(TERM3-3)));
h3(f lag,:)=h3(f lag-i ,:)-mi3*(TERM3-3);
a3=h13(f lag,:)*f lipud(x3);
s3=[s3;mi3];
TERM3-3=U;TERM2 3=fl;term 1 3=fl;term2ý3=[];COSTý3=fl;
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f inal_3=[f inal__3;a3];
end
dl =hist(CF1 , 1 6);d2=hist(CF2,64);d3=hist(CF3,256);
criterion=[sum(dl (1:4)) sum(d2(1 :16)) sum(d3(1 :64))];
i=f ind (crte rion==max(criterion));
if i==1
disp('we have 1 6QAM') ;fiag=70;fiag__storage=7;

elseif i==2
disp('we have 64QAM') ;flag=80;flag-storage=8;

elseif i==3
disp('we have 256QAM');flag=90;flag...storage=9;

elseif i(1)==2
disp ('we have 64QAM or 256QAM');flag storage=1 00;

elseif i(1)=1-
disp('we have 16QAM or 640AM');f lag-storage=1 01;

else
disp('we have 1 6QAM or 256QAM') ;f Iag~storage=1 02;

end

return
% END OF FUNCTION

Copy of the complete MATLAB code derived for the study can be found in Hatzichristos

[HATOO] or by contacting the authors.
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APPENDIX E. HIGHER ORDER STATISTICS BEHAVIOR IN NOISE AND
FADING MULTIPATH ENVIRONMENTS

The robustness of higher order statistics in noise and propagation phenomena is a

key to the success of the proposed classifier. Marchand [MAR98) recommends the use of

moments and cumulants for the classification of digital modulations but does not present

any clues about the robustness of these tools in real world situations. These situations are

simulated and presented next. The simulation results are divided into two categories. In

the first category only the additive white Gaussian noise channel is considered. In the

second category, nine different propagation channels (Appendix C, Figures C-i to C-9)

are used in addition to white noise. Each category includes three different sets of results.

1000, 15000 and 30000 signal samples respectively, are used to indicate the minimum

required samples for clear separation between all features.



E.1 ADDITIVE WHITE GAUSSIAN NOISE CHANNEL SIMULATIONS
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E.2 FADING MULTIPATH CHANNEL SIMULATIONS
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APPENDIX F. SIMULATION RESULTS

Simulation results are divided into three main categories. The first category uses a

rural area propagation model, which was presented in Figure C-10. The second category

represents a small town propagation model, which was presented in Figure C-12, and the

third category an urban propagation model with severe multi-path distortions (Figure C-

15). Each category contains simulations of seven different signal- to-noise ratio levels

from 20dB to 2dB in steps of 3dB. Fifty trials per SNR level and per category have been

created, forming a total of twenty-one confusion matrixes. Overall classification

performances and neural network-only overall classification performances are given in

the top left comer of each confusion matrix, where the neural network-only performance

is shown between parentheses. Figures C-22 to C-28 results present results for the linear

channel simulation case.

99.11%
(100%) 2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM
2-FSK 50 0 0 0 0 0 0 0 0
4-FSK 0 50 0 0 0 0 0 0 0
8-FSK 0 0 50 0 0 0 0 0 0
2-PSK 0 0 0 50 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0
8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 46 3 1
64-QAM 0 0 0 0 0 0 0 50 0
256-QAM 0 0 0 0 0 0 0 0 50

Table F-1. Rural area propagation channel model, SNR=20dB, 50 trials.
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97.78%
(100%) 2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM
2-FSK 50 0 0 0 0 0 0 0 0
4-FSK 0 50 0 0 0 0 0 0 0
8-FSK 0 0 50 0 0 0 0 0 0
2-PSK 0 0 0 50 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0
8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 44 4 2
64-QAM 0 0 0 0 0 0 0 50 0

1256-QAM 0 0 0 0 0 0 0 4 46

Table F-2. Rural area propagation channel model, SNR=17dB, 50 trials.

93.56%
(100%) 2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM

2-FSK 50 0 0 0 0 0 0 0 0
4-FSK 0 50 0 0 0 0 0 0 0

8-FSK 0 0 50 0 0 0 0 0 0
2-PSK 0 0 0 50 0 0 0 0 0

4-PSK 0 0 0 0 50 0 0 0 0
8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 22 19 9
64-QAM 0 0 0 0 0 0 0 50 0

256-QAM 0 0 0 0 0 0 0 1 49
Table F-3. Rural area propagation channel model, SNR=t4dB, 50 trials.

86.67%
(100%) 2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM

2-FSK 50 0 0 0 0 0 0 0 0
4-FSK 0 50 0 0 0 0 0 0 0

8-FSK 0 0 50 0 0 0 0 0 0
2-PSK 0 0 0 50 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0
8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 0 49 1
64-QAM 0 0 0 0 0 0 0 49 1

256-QAM 0 0 0 0 0 0 0 9 41
Table F-4. Rural area propagation channel model, SNR=1I dB, 50 trials.
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70%
(91.11%) 2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM
2-FSK 50 0 0 0 0 0 0 0 0
4-FSK 0 50 0 0 0 0 0 0 0
8-FSK 0 0 50 0 0 0 0 0 0
2-PSK 40 0 0 10 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0
8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 0 31 19
64-QAM 0 0 0 0 0 0 0 35 15

256-QAM 0 0 0 0 0 0 0 30 20

Table F-5. Rural area propagation channel model, SNR=8dB, 50 trials.

52.44%
(75.11%) 2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM
2-FSK 0 1 49 0 0 0 0 0 0
4-FSK 0 45 5 0 0 0 0 0 0
8-FSK 0 7 43 0 0 0 0 0 0
2-PSK 50 0 0 0 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0
8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 0 19 31
64-QAM 0 0 0 0 0 0 0 48 2

256-QAM 0 0 0 0 0 0 0 50 0
Table F-6. Rural area propagation channel model, SNR=5dB, 50 trials.

46.89% 256-
(69.11%) 2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM QAM

2-FSK 0 2 48 0 0 0 0 0 0
4-FSK 0 41 9 0 0 0 0 0 0
8-FSK 0 30 20 0 0 0 0 0 0
2-PSK 2 0 0 0 0 48 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0
8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 0 50 0
64-QAM 0 0 0 0 0 0 0 50 0

256-QAM 0 0 0 0 0 0 0 50 0
Table F-7. Rural area propagation channel model, SNR=2dB, 50 trials.
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81.78%
(97.33%) 2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM

2-FSK 44 0 0 0 0 6 0 0 0

4-FSK 0 50 0 0 0 0 0 0 0

8-FSK 0 6 44 0 0 0 0 0 0

2-PSK 0 0 0 50 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0

8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 36 14 0

64-QAM 0 0 0 0 0 0 7 12 31

256-QAM 0 0 0 0 0 0 0 18 32

Table F-8. Small town propagation channel model, SNR=20dB, 50 trials.

84.89% 256-
(98.67%) 2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM QAM

2-FSK 48 0 0 0 0 2 0 0 0
4-FSK 0 50 0 0 0 0 0 0 0

8-FSK 0 3 47 0 0 0 0 0 0

2-PSK 0 0 0 50 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0

8-PSK 0 0 0 0 1 49 0 0 0
16-QAM 0 0 0 0 0 0 35 11 4

64-QAM 0 0 0 0 0 0 1 22 27
256-QAM 0 0 0 0 0 0 0 19 31

Table F-9. Small town propagation channel model, SNR=17dB, 50 trials.

82.89% 256-
(8.89%) 2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM QAM

2-FSK 47 0 0 0 2 1 0 0 0

4-FSK 0 50 0 0 0 0 0 0 0

8-FSK 0 2 48 0 0 0 0 0 0

2-PSK 0 0 0 50 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0

8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 36 2 12

64-QAM 0 0 0 0 0 0 0 21 29
256-QAM 0 0 0 0 0 0 1 28 21

Table F-10. Small town propagation channel model, SNR=14dB, 50 trials.
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86.22%
(98.66%) 2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM

2-FSK 46 0 0 0 0 0 1 1 2

4-FSK 0 50 0 0 0 0 0 0 0

8-FSK 0 2 48 0 0 0 0 0 0

2-PSK 0 0 0 50 0 0 0 0 0

4-PSK 0 0 0 0 50 0 0 0 0

8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 33 8 9

64-QAM 0 0 0 0 0 0 0 50 0
256-QAM 0 0 0 0 0 0 0 41 9

Table F-11. Small town propagation channel model, SNR=I1 dB, 50 trials.

79.33%
(98.44%) 2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM

2-FSK 48 0 0 2 0 0 0 0 0

4-FSK 0 50 0 0 0 0 0 0 0

8-FSK 0 5 45 0 0 0 0 0 0
2-PSK 0 0 0 50 0 0 0 0 0

4-PSK 0 0 0 0 50 0 0 0 0

8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 10 31 9

64-QAM 0 0 0 0 0 0 0 50 0

256-QAM 0 0 0 2 0 0 0 44 4

Table F-12. Small town propagation channel model, SNR=8dB, 50 trials.

36%
(39.11%) 2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM

2-FSK 0 0 0 50 0 0 0 0 0

4-FSK 0 22 1 27 0 0 0 0 0

8-FSK 0 0 40 10 0 0 0 0 0

2-PSK 50 0 0 0 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0

8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 36 0 0 0 11 3

64-QAM 0 0 0 50 0 0 0 0 0

256-QAM 0 0 0 50 0 0 0 0 0

Table F-13. Small town propagation channel model, SNR=5dB, 50 trials.
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25.56%
(25.56%) 2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM

2-FSK 0 0 0 50 0 0 0 0 0

4-FSK 0 15 5 30 0 0 0 0 0

8-FSK 0 0 0 50 0 0 0 0 0

2-PSK 1 0 0 0 0 49 0 0 0

4-PSK 0 0 0 0 50 0 0 0 0

8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 50 0 0 0 0 0

64-QAM 0 0 0 50 0 0 0 0 0

256-QAM 0 0 0 50 0 0 0 0 0

Table F-14. Small town propagation channel model, SNR=2dB, 50 trials.

84.88%
(96.44%) 2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM

2-FSK 48 0 0 0 0 2 0 0 0
4-FSK 0 48 2 0 0 0 0 0 0

8-FSK 0 12 38 0 0 0 0 0 0

2-PSK 0 0 0 50 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0

8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 35 15 0

64-QAM 0 0 0 0 0 0 0 42 8

256-QAM 0 0 0 0 0 0 0 29 21
Table F-15. Urban area propagation channel model, SNR=20dB, 50 trials.

78.89%
(94.22%) 2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM

2-FSK 40 0 0 0 0 10 0 0 0
4-FSK 0 48 2 0 0 0 0 0 0

8-FSK 0 14 36 0 0 0 0 0 0

2-PSK 0 0 0 50 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0
8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 24 26 0

64-QAM 0 0 0 0 0 0 0 44 6

256-QAM 0 0 0 0 0 0 0 37 13

Table F-16. Urban area propagation channel model, SNR=17dB, 50 trials.
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71.11%
(85.78% 2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM

2-FSK 50 0 0 0 0 0 0 0 0

4-FSK 0 48 2 0 0 0 0 0 0

8-FSK 0 12 38 0 0 0 0 0 0

2-PSK 50 0 0 0 0 0 0 0 0

4-PSK 0 0 0 0 50 0 0 0 0

8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 27 22 1

64-QAM 0 0 0 0 0 0 0 45 5

256-QAM 0 0 0 0 0 0 0 38 12
Table F-17. Urban area propagation channel model, SNR=14dB, 50 trials.

69.11%
(83.55%) 2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM

2-FSK 50 0 0 0 0 0 0 0 0
4-FSK 0 45 5 0 0 0 0 0 0

8-FSK 0 19 31 0 0 0 0 0 0

2-PSK 50 0 0 0 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0

8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 35 15 0
64-QAM 0 0 0 0 0 0 0 49 1

256-QAM 0 1 0 0 0 0 0 0 49 1
Table F-18. Urban area propagation channel model, SNR= 11 dB, 50 trials.

63.33%
(84.66%) 2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM

2-FSK 50 0 0 0 0 0 0 0 0
4-FSK 0 45 5 0 0 0 0 0 0
8-FSK 0 114 36 0 0 0 0 0 0
2-PSK 50 0 0 0 0 10 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0
8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 4 146 1 0
64-QAM 0 0 0 00 00 5

1256-QAM 0 0 0 0 0 0 0 50 0
Table F-19. Urban area propagation channel model, SNR=8dB, 50 trials.
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49.11%

(71.33%) 2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM

2-FSK 0 1 49 0 0 0 0 0 0

4-FSK 0 37 13 0 0 0 0 0 0

8-FSK 0 16 34 0 0 0 0 0 0

2-PSK 50 0 0 0 0 0 0 0 0

4-PSK 0 0 0 0 50 0 0 0 0

8-PSK 0 0 0 0 0 50 , 0 0

16-QAM 0 0 0 0 0 0 0 50 0

64-QAM 0 0 0 0 0 0 0 50 0

256-QAM 0 0 0 0 0 0 0 50 0

Table F-20. Urban area propagation channel model, SNR=5dB, 50 trials.

45.78%
(67.55%) 2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM

2-FSK 0 43 7 0 0 0 0 0 0
4-FSK 0 34 16 0 0 0 0 0 0

8-FSK 0 28 22 0 0 0 0 0 0

2-PSK 50 0 0 0 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0
8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 0 50 0

64-QAM 0 0 0 0 0 0 0 50 0

256-QAM 0 0 0 0 2 0 0 48 0

Table F-21. Urban area propagation channel model, SNR=2dB, 50 trials.

90.22%
(95.33%) 2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM

2-FSK 50 0 0 0 0 0 0 0 0

4-FSK 0 49 1 0 0 0 0 0 0

8-FSK 5 15 30 0 0 0 0 0 0
2-PSK 0 0 0 50 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0

8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 50 0 0
64-QAM 0 0 0 0 0 0 1 39 10

256-QAM 0 0 0 0 0 0 3 9 38

Table F-22. Linear channel model c=[1 ,0,0.5], SNR=20dB, 50 trials.
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90.89%
(95.78%) 2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM

2-FSK 50 0 0 0 0 0 0 0 0
4-FSK 0 50 0 0 0 0 0 0 0

8-FSK 1 18 31 0 0 0 0 0 0

2-PSK 0 0 0 50 0 0 0 0 0

4-PSK 0 0 0 0 50 0 0 0 0

8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 50 0 0

64-QAM 0 0 0 0 0 0 1 34 15

256-QAM 0 0 0 0 0 0 0 6 44
Table F-23. Linear channel model c=[1,0,0.5], SNR=17dB, 50 trials.

82.66%
(94.22%) 2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM

2-FSK 50 0 0 0 0 0 0 0 0
4-FSK 0 49 1 0 0 0 0 0 0

8-FSK 0 25 25 0 0 0 0 0 0
2-PSK 0 0 0 50 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0

8-PSK 0 0 0 0 0 50 0 0 0
16-QAM 0 0 0 0 0 0 46 0 4
64-QAM 0 0 0 0 0 0 1 10 39

256-QAM 0 0 0 0 0 0 0 8 42
Table F-24. Linear channel model c=[ 1,0,0.5], SNR= 14dB, 50 trials.

69.11%
(93.11%) 2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM

2-FSK 50 0 0 0 0 0 0 0 0
4-FSK 0 39 11 0 0 0 0 0 0

8-FSK 0 18 32 0 0 0 0 0 0
2-PSK 0 0 0 50 0 0 0 0 0

4-PSK 0 2 0 0 48 0 0 0 0

8-PSK 0 0 0 0 0 50 0 0 0
16-QAM 0 0 0 0 0 0 24 3 23

64-QAM 0 0 0 0 0 0 0 13 37
256-QAM 0 0 0 0 0 0 0 45 5

Table F-25. Linear channel model c=[1,0,0.5], SNR=1 1dB, 50 trials.
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66.44%
(88.66%) 2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM

2-FSK 50 0 0 0 0 0 0 0 0

4-FSK 0 25 25 0 0 0 0 0 0

8-FSK 0 26 24 0 0 0 0 0 0

2-PSK 0 0 0 50 0 0 0 0 0

4-PSK 0 0 0 0 50 0 0 0 0

8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 0 4 46

64-QAM 0 0 0 0 0 0 0 50 0

256-QAM 0 0 0 0 0 0 0 50 0

Table F-26. Linear channel model c=[ 1,0,0.5], SNR=8dB, 50 trials.

60%
(82.22%) 2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM

2-FSK 50 0 0 0 0 0 0 0 0
4-FSK 0 37 13 0 0 0 0 0 0

8-FSK 0 17 33 0 0 0 0 0 0
2-PSK 50 0 0 0 0 0 0 0 0
4-PSK 0 0 0 0 50 0 0 0 0

8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 0 0 0 50 0

64-QAM 0 0 0 0 0 0 0 50 0

256-QAM 0 0 0 0 0 0 0 50 0
Table F-27. Linear channel model c=[1,0,0.5], SNR=5dB, 50 trials.

38%

(41.55%) 2-FSK 4-FSK 8-FSK 2-PSK 4-PSK 8-PSK 16-QAM 64-QAM 256-QAM

2-FSK 0 50 0 0 0 0 0 0 0

4-FSK 0 42 8 0 0 0 0 0 0

8-FSK 0 23 27 0 0 0 0 0 0

2-PSK 50 0 0 0 0 0 0 0 0

4-PSK 0 0 0 0 50 0 0 0 0

8-PSK 0 0 0 0 0 50 0 0 0

16-QAM 0 0 0 0 34 0 0 16 0

64-QAM 0 0 0 0 22 26 0 2 0

256-QAM 0 0 0 0 26 24 0 0 0
Table F-28. Linear channel model c=[1,0,0.5], SNR=2dB, 50 trials.
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